• 제목/요약/키워드: Amyloid precursor protein

검색결과 110건 처리시간 0.028초

마미련(馬尾連)이 Alzheimer's Disease 병웅(病熊) 모델에 미치는 영향(影響) (The Effects of Thalictrum foetidum(TFD) on the Alzheimer's Disease Model)

  • 배재용;이상룡;정인철
    • 동의신경정신과학회지
    • /
    • 제18권1호
    • /
    • pp.63-78
    • /
    • 2007
  • Objective : This experiment was designed to investigate the effect of Thalictrum foetidum(TFD) on the Alzheimer's disease. Method : The effects of TFD on amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 cell treated by amyloid ${\beta}$ $protein(A{\beta})$ and $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA of THP-l cell treated by lipopolysaccharide(LPS), AChE activity of PC-12 cell lysate treated by $A{\beta}$ and behavior of the memory deficit mice induced by scopolamine, and glucose, AChE in serum of the memory deficit mice induced by scopolamine were investigated, respectively. Results : The results were summarized as follows ; 1. TFD suppressed APP, AChE, GFAP mRNA in PC-12 cell treated by $A{\beta}$. 2. TFD suppressed $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ mRNA in THP-l cell treated by LPS 3.. TFD suppressed AChE activity in cell lysate of PC-12 cell treated by $A{\beta}$. 4. TFD increased glucose and decreased AChE significantly in the serum of the memory deficit mice induced by scopolamine. 5. TFD group showed significantly inhibitory effect on the scopolamine-induced impairment of learning and memory in the experiment of Morris water maze. Conclusion : According to the above results, it is suggested that TFD might be usefully applied for prevention and treatment of Alzheimer's disease.

  • PDF

Alzheimer's Disease-linked Swedish Amyloid Precursor Protein Mutation Induces Cell Death by Increasing Reactive Oxygen Species Generation

  • Kim Hye Sun;Lee Jun Ho;Kim Eun Mee;Lee Jean Pyo;Suh Yoo Hun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권1호
    • /
    • pp.19-24
    • /
    • 2005
  • The Swedish double mutation (KM670/671NL) of amyloid precursor protein (Swe-APP) is associated with early-onset familial Alzheimer's disease (FAD) and increases amyloid beta peptide production. Although APP/A/3 mediated neurotoxicity is observed both in vitro and in vivo, the relationship between mutant APP expression, A/3 production, and neuronal death observed in the brains of FAD patients remains to be elucidated. In this study, we investigated the mechanisms of Swe-APP-induced cell death in HEK293 and NGF-differentiated PC 12 cells. We found that the expression of Swe-APP induced cytochrome C relase, activation of caspase 3 in HEK 293 and NGF-differentiated PC 12 cells. We also show that the reactive oxygen species (ROS) was detected in Swe-APP expressing HEK 293 cells and NGF-differentiated PC 12 cells and that pretreatment with vitamine E attenuated the cellular death, cytochrome C release induced by Swe-APP expression, indicating the involvement of free radical in these processes. These results suggest one of possible apoptotic mechanisms of Swe-APP which could occur through cytochrome C release from mitochondria and this apoptosis inducing effects could be at least in part, due to ROS generation by Swe-APP expression.

  • PDF

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • 제39권7호
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향 (The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells)

  • 쉬레스타 아비나쉬 찬드라;김주은;함하늘;조윤정;트란 더 바이트;엄상미;임재윤
    • 생약학회지
    • /
    • 제49권2호
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.

Suppression of β-Secretase (BACE1) Activity and β-Amyloid Protein-Induced Neurotoxicity by Solvent Fractions from Petasites japonicus Leaves

  • Hong, Seung-Young;Park, In-Shik;Jun, Mi-Ra
    • Preventive Nutrition and Food Science
    • /
    • 제16권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and extracellular senile plaques containing $\beta$-amyloid peptide (A$\beta$). The deposition of the A$\beta$ peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is a critical feature in the progression of AD. Among the plant extracts tested, the ethanol extract of Petasites japonicus leaves showed novel protective effect on B103 neuroblastoma cells against neurotoxicity induced by A$\beta$, as well as a strong suppressive effect on BACE1 activity. Ethanol extracts of P. japonicus leaves were sequentially extracted with methylene chloride, ethyl acetate and butanol and evaluated for potential to inhibit BACE1, as well as to suppress A$\beta$-induced neurotoxicity. Exposure to A$\beta$ significantly reduced cell viability and increased apoptotic cell death. However, pretreatment with ethyl acetate fraction of P. japonicus leaves prior to A$\beta$ (50 ${\mu}M$) significantly increased cell viability (p<0.01). In parallel, cell apoptosis triggered by A$\beta$ was also dramatically inhibited by ethyl acetate fraction of P. japonicus leaves. Moreover, the ethyl acetate fraction suppressed caspase-3 activity to the basal level at 30 ppm. Taken together, these results demonstrated that P. japonicus leaves appear to be a useful source for the inhibition and/or prevention of AD by suppression of BACE1 activity and attenuation of A$\beta$ induced neurocytotoxicity.

허혈-재관류 유도 SH-SY5Y 모델에서 베타아밀로이드 생성에 미치는 석창포 추출물에 대한 뇌 신경보호 효과 (Neuroprotective Effects of Acorus gramineus Soland. on Oxygen-Glucose Deprivation/Reoxygenation-Induced β-amyloid Production in SH-SY5Y Neuroblastoma Cells)

  • 신수영;정진우;김철환;안은정;이승영;이창민;최경민
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.58-58
    • /
    • 2021
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced β-amyloid (Aβ) generation and development of AD is not yet known. In this study, we investigated the protective effects of Acorus gramineus Soland. (AGS) on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced A β production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with AGS significantly attenuated OGD/R-induced production of reactive oxygen species (ROS) and elevation of levels of malondialdehyde, nitrite (NO), prostaglandin E2 (PGE2), cytokines (TNF-α, IL-1β and IL-6) and glutathione, as well as superoxide dismutase activity. AGS also reduced OGD/R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, AGS reduced OGD/R-induced Aβ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that AGS may prevent neuronal cell damage from OGD/R-induced toxicity.

  • PDF

β-Secretase (BACE1) Purification by Refolding Method and Complex with Hispidin

  • Lim, Ji-Hong;Lee, Bo Ram;Park, Hee Won;Hong, Bum Soo;Lim, Beong Ou;Kim, Young Jun
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.553-559
    • /
    • 2014
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease that represents the most common form of dementia among the elderly population. The deposition of aggregated ${\beta}$-amyloid ($A{\beta}$) senile plaques in the human brain is a classic observation in the neuropathology of AD, yet an understanding of the mechanism of their formation remains elusive. $A{\beta}$ is formed through endoproteolysis of the amyloid precursor protein (APP) by ${\beta}$-secretase (BACE1, ${\beta}$-site APP-cleaving enzyme) and ${\gamma}$-secretase. In this study, BACE1 protein was successfully over-expressed, purified, and refolded and utilized in a binding study with hispidin. We developed a simpler refolding method using a urea gradient and size-exclusion gel filtration to purify an active BACE1 protein variant, in larger quantities than that reported previously, and measured the binding affinity of hispidin to the BACE1 protein variant through isothermal titration calorimetry.

Ultrastructural Abnormalities in APP/PSEN1 Transgenic Mouse Brain as the Alzheimer's Disease Model

  • Kim, Mi Jeong;Huh, Yang Hoon;Choi, Ki Ju;Jun, Sangmi;Je, A Reum;Chae, Heesu;Lee, Chulhyun;Kweon, Hee-Seok
    • Applied Microscopy
    • /
    • 제42권4호
    • /
    • pp.179-185
    • /
    • 2012
  • Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Neuropathological hallmarks of AD are amyloid plaques, dystrophic neurite, and alteration of subcellular organelles. However, the morpho-functional study of this degenerative process and ultimate neuronal death remains poorly elucidated. In this study, immunohistochemical and ultrastructural analyses were performed to clarify the abnormal morphological alterations caused by the progression of AD in APP/PSEN1 transgenic mice, express human amyloid precursor protein, as a model for AD. In transgenic AD mice brain, the accumulation of Amyloid ${\beta}$ plaques and well-developed dystrophic neurites containing anti-LC3 antibody-positive autophagosomes were detected in the hippocampus and cortex regions. We also found severe disruption of mitochondrial cristae using high-voltage electron microscopy and three-dimensional electron tomography (3D tomography). These results provide morpho-functional evidence on the alteration of subcellular organelles in AD and may help in the investigation of the pathogenesis of AD.

Rapid Identification of Bioactive Compounds Reducing the Production of Amyloid β-Peptide (Aβ) from South African Plants Using an Automated HPLC/SPE/HPLC Coupling System

  • Kwon, Hak-Cheol;Cha, Jin-Wook;Park, Jin-Soo;Chun, Yoon-Sun;Moodley, Nivan;Maharaj, Vinesh J.;Youn, Sung-Hee;Chung, Sung-Kwon;Yang, Hyun-Ok
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.90-96
    • /
    • 2011
  • Automated HPLC/SPE/HPLC coupling experiments using the Sepbox system allowed the rapid identification of four bioactive principles reducing the production of amyloid $\beta$-peptide ($A{\beta}$) from two South African plants, Euclea crispa subsp. crispa and Crinum macowanii. The structures of biologically active compounds isolated from the methanol extract of Euclea crispa subsp. crispa were assigned as 3-oxo-oleanolic acid (1) and natalenone (2) based on their NMR and MS data, while lycorine (3) and hamayne (4) were isolated from the dichloromethane-methanol (1:1) extract of Crinum macowanii. These compounds were shown to inhibit the production of $A{\beta}$ from HeLa cells stably expressing Swedish mutant form of amyloid precursor protein (APPsw).

알쯔하이머 질환의 신경생물학 (Neurobiology of Alzheimer's Disease)

  • 정영조;서승우;이승환
    • 생물정신의학
    • /
    • 제8권1호
    • /
    • pp.62-70
    • /
    • 2001
  • Alzheimer's disease(AD) is associated with a characteristic neuropathology. The major hallmarks of AD are senile plaques (SPs) and neurofibrillary tangles(NFTs). ${\beta}$-amyloid protein($A{\beta}$) is derived from the proteolysis of amyloid precursor protein(APP) and then converted to SPs. Mature SPs produce cytotoxicity through direct toxic effects and activation of microglia and complement. NFTs are composed of paired helical filaments(PHFs) including abnormally phosphorylated form of the microtubule-associated protein(MAP) tau and increased tau level in cerebrospinal fluid may be observed in most AD. The aggregation of $A{\beta}$ and tau formation are thought to be a final common pathway of AD. Acetylcholine, dopamine, serotonin, GABA and their receptors are associated with AD. Especially, decreased nicotinic acetylcholine receptors(nAChRs) in AD are reported. Genetic lesions associated with AD are mutations in the structural genes for the APP located on chromosome 21, presenilin(PSN)1 located on chromosome 14 and PSN2 located on chromosome 1. Also, trisomy 21, Apo-E gene located on chromosome 19, PMF locus, low density lipoprotein receptor-related protein and ${\alpha}$-macroglobulin increase risk of AD. In this article, we will review about the neurobiology of AD and some newly developed research areas.

  • PDF