• Title/Summary/Keyword: Amyloid β

Search Result 129, Processing Time 0.027 seconds

Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells (베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구)

  • Park, Gyu Hwan;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.

Raw Inonotus obliquus polysaccharide counteracts Alzheimer's disease in a transgenic mouse model by activating the ubiquitin-proteosome system

  • Shumin Wang;Kaiye Dong;Ji Zhang;Chaochao Chen;Hongyan Shuai;Xin Yu
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1128-1142
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Inonotus obliquus has been used as antidiabetic herb around the world, especially in the Russian and Scandinavian countries. Diabetes is widely believed to be a key factor in Alzheimer's disease (AD), which is widely considered to be type III diabetes. To investigate whether I. obliquus can also ameliorate AD, it would be interesting to identify new clues for AD treatment. We tested the anti-AD effects of raw Inonotus obliquus polysaccharide (IOP) in a mouse model of AD (3×Tg-AD transgenic mice). MATERIALS/METHODS: SPF-grade 3×Tg-AD mice were randomly divided into three groups (Control, Metformin, and raw IOP groups, n = 5 per group). β-Amyloid deposition in the brain was analyzed using immunohistochemistry for AD characterization. Gene and protein expression of pertinent factors of the ubiquitin-proteasome system (UPS) was determined using real-time quantitative polymerase chain reaction and Western blotting. RESULTS: Raw IOP significantly reduced the accumulation of amyloid aggregates and facilitated UPS activity, resulting in a significant reduction in AD-related symptoms in an AD mouse model. The presence of raw IOP significantly enhanced the expression of ubiquitin, E1, and Parkin (E3) at both the mRNA and protein levels in the mouse hippocampus. The mRNA level of ubiquitin carboxyl-terminal hydrolase isozyme L1, a key factor involved in UPS activation, also increased by approximately 50%. CONCLUSIONS: Raw IOP could contribute to AD amelioration via the UPS pathway, which could be considered as a new potential strategy for AD treatment, although we could not exclude other mechanisms involved in counteracting AD processing.

Effects of Polygalae Radix on β-Amyloid Accumulation and Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Rats (원지(遠志)가 만성적 뇌혈류저하 흰쥐의 β-Amyloid 축적과 기억장애에 미치는 영향)

  • Son, Young-Ha;Kim, Sung-Jae;Chung, Min-Chan;Cho, Dong-Guk;Cho, Woo-Sung;Shin, Jung-Won;Park, Dong-Il;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.73-83
    • /
    • 2014
  • Objectives : This study was investigated the effects of the root of Polygala tenuifolia (POL) on learning and memory impairment induced by chronic cerebral hypoperfusion in rats. Methods : Chronic cerebral hypoperfusion was produced by permanent bilateral common carotid artery occlusion (pBCAO). POL was administered orally once a day (130 mg/kg of water-extract) for 28 days starting at 4 weeks after the pBCAO. The acquisition of learning and the retention of memory were tested on 9th week after the pBCAO using the Morris water maze. In addition, effects of POL on $A{\beta}$ generation and expressions of APP and BACE1 were observed in the hippocampus of rats. Results : POL significantly prolonged the swimming time spent in target quadrant and significantly reduced the swimming time spent in the quadrant far from the target. POL significantly increased the percentage of swim in the targer quadrant in the retention test, while POL was not effective on the escape latencies in the acquisition training trials. POL significantly reduced the levels of $A{\beta}_{(1-40)}$ and $A{\beta}_{(1-42)}$ in the cerebral cortex and the level of $A{\beta}_{(1-42)}$ in the hippocampus produced by chronic cerebral hypoperfusion. POL also significantly attenuated the up-regulation of APP and BACE1 expression in the hippocampus produced by chronic cerebral hypoperfusion. Conclusions : The results show that POL alleviated memory deficit and up-regulation of $A{\beta}$ and BACE1 expressions in the hippocampus. This result suggests that POL may exert ameliorating effect on memory deficit through inhibition of ${\beta}$-secretase activity and $A{\beta}$ generation.

Ameliorative effect of onion (Allium Cepa L.) flesh and peel on amyloid-β-induced cognitive dysfunction via mitochondrial activation (미토콘드리아 활성화를 통한 양파(Allium Cepa L.) 과육 및 과피의 Amyloid-β 유도성 인지손상에 대한 개선효과)

  • Park, Seon Kyeong;Lee, Uk;Kang, Jin Yong;Kim, Jong Min;Shin, Eun Jin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.263-273
    • /
    • 2020
  • In this study, in order to confirm the ameliorative effects of onion (Allium cepa L.) flesh and peel on amyloidbeta (Aβ)-induced cognitive dysfunction, we evaluated their in vitro neuroprotection and in vivo cognitive functions. As the result of in vitro neuroprotection, the protective effect of the ethyl acetate fraction of onion flesh (EOF) on Aβ-induced cytotoxicity was similar to that of the ethyl acetate fraction of onion peel (EOP). In the behavioral tests, the EOF and EOP effectively improved the Aβ-induced learning and memory impairments. For this reason, it could be concluded that the EOF and EOP improved the antioxidant activities (superoxide dismutase, oxidized glutathione/total glutathione, and malondialdehyde) in brain tissue. In addition, the EOF and EOP effectively activated mitochondrial functions by protecting the mitochondrial membrane potential, ATP, mitochondria-mediated protein (BAX and cytochrome c), and caspase 3/7 activities. The EOF and EOP also improved the cholinergic system (acetylcholinesterase and acetylcholine). Therefore, we suggest that onion could be used for management of Aβ-induced cognitive dysfunction.

The Effect of Treadmill Exercise and Environmental Enrichment on Cognitive Function, Muscle Function, and Levels of tight junction protein in an Alzheimer's Disease Animal Model (트레드밀 운동 및 환경강화가 알츠하이머 질환 동물 모델의 인지기능, 근 기능 및 밀착연접 단백질 수준에 미치는 영향)

  • Hyun-Seob Um;Jong-Hwan Jung;Tae-Kyung Kim;Yoo-Joung Jeon;Joon-Yong Cho;Jung-Hoon Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.58-68
    • /
    • 2024
  • The purpose of this study was to investigate the effects of treadmill exercise treadmill exercise (TE) and environmental enrichment (EE) interventions on cognitive function, muscle function, and the expression of tight junction proteins in an Alzheimer's disease (AD) animal model. To create the AD animal model, aluminum chloride (AlCl3) was administered for 90 days (40mg/kg/day), while simultaneously exposing the animals to TE (10-12m/min, 40-60min/day) or EE. The results showed that cognitive impairment and muscle dysfunction induced by AlCl3 administration were alleviated by TE and EE. Furthermore, TE and EE reduced the increased expression of β-amyloid(Aβ), alpha-synuclein, and tumor necrosis factor-α (TNF-α) proteins observed in AD pathology. Additionally, TE and EE significantly increased the expression of decreased adhesive adjacent proteins (Occludin, Claudin-5, and ZO-1) induced by AlCl3 administration. Lastly, correlation analysis between Aβ protein and tight junction proteins showed negative correlations (Occludin: r=-0.853, p=0.001; Claudin-5: r=-0.352, p=0.915; ZO-1: r=-0.424, p=0.0390). In conclusion, TE or EE interventions are considered effective exercise methods that partially alleviate pathological features of AD, improving cognitive and muscle function.

The Regulatory Effect of Zhengan Xifeng-tang on Pro-inflammatory Cytokine in Human Brain Astrocytes (인간 뇌 성상세포에서 진간식풍탕의 사이토카인 조절 효과)

  • Ryu Hyun Hee;Lee Seoung Geun;Lee Key Sang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.490-495
    • /
    • 2004
  • Brain cells produce cytokines and chemokines during the inflammatory process of many neuronal diseases both in animal models and in patients. Inflammatory cytokines are the main responsible for the onset of inflammatory cascade. During the past decade, a growing corpus of evidence has indicated an important role of these cytokines in the development of brain damage. ZhenganXifeng-tang (ZGXFT) is a Korean herbal prescription, which has been successfully applied for the treatment of various neuronal diseases. However, its effect in experimental models remains unknown. Astrocytes are predominant neuroglial cells of the central nervous system and are actively involved in cytokine-mediated events in inflammatory disease. An inflammatory response associated with β-amyloid (Aβ) and interleukin (IL)-1β is responsible for the pathology of inflammation disease. To investigate the biological effect of ZGXFT, the author examined cytotoxicity, effect of cytokines (IL-6 and IL-8) secretion and expression of cyclooxygenase-2 (COX-2) on human astrocytoma cell line U373MG stimulated with IL-1β plus M fragment 25-35 (Aβ [25-35]). ZGXFT by itself had no effect on cell viability on human astrocytoma cells. The secretion of IL-6 and IL-8 was inhibited by pre-treatment with ZGXFT in human astrocytoma cells. In addition, the expression of COX-2 was induced by IL-1β plus AB[25-35] and was partially inhibited by treatment with ZGXFT. The author demonstrates the regulatory effects of inflammatory reactions by ZGXFT in human astrocytes for the first time and suggest the anti-inflammatory effect of ZGXFT may reduce and delay pathologic events of inflammatory disease.

The effect of scopoletin on Aβ-induced neuroinflammatory response in microglial BV-2 cells

  • Mun, Hui-Jin;Cho, Hyun-Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.165-170
    • /
    • 2020
  • In this paper, it was confirmed that scopoletin inhibits neuroinflammation induced by amyloid beta oligomer (Aβ1-42) in microglial BV-2. The mechanisms of inflammatory cytokines and inflammatory mediators by scopoletin were identified. Alzheimer's disease is the most common neurodegenerative disease, but it is a disease whose specific etiology is unknown, and many studies are trying to solve it. We first measured the cell viability with the CCK-8 assay method to confirm that scopoletin and Aβ1-42 are toxic to BV-2 cells. Expression levels of interleukin 1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor-κB (NF-κB) in inflammatory reactions induced by Aβ1-42 with western blot were analyzed. The ANOVA assay was used to compare protein expression differences between BV-2 cells treated with Aβ1-42 alone and BV-2 cells pretreated with Aβ1-42 and scopoletin. Therefore, this study suggested that scopoletin is worth developing as a neuroinflammatory protection agent for Alzheimer's disease in the future.

The Effects of Crataegus pinnatifida BGE. var. major N.E. BR Extract on the Alzheimer's Disease Model (산사육이 Alzheimer's Disease 병태 모델에 미치는 영향)

  • Jung In Chul;Lee Sang Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.279-288
    • /
    • 2002
  • This research investigates the effect of the Crataegus pinnatifida BGE. var. major N.E. BR(CPVM) on Alzheimer's disease. The CPVM extract suppressed the expression of IL-1 β, IL-6, APP, AChE mRNA in PC-12 cells treated with CT105. The CPVM extract suppressed the AChE activity, and the production of APP significantly in PC-12 cells treated with CT105. The CPVM extract group showed a significant inhibitory effect on the memory deficit for the mice with Alzheimer's disease induced by CT105 in the Morris water maze experiment. The CPVM extract suppressed the over-expression of IL-1 β, TNF- α and ROS in the mice with Alzheimer's disease induced by CT105. This study suggests that CPVM may be effective for the prevention and treatment of Alzheimer's disease.

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation (Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과)

  • Park, Sun-Haeng;Kim, Ji-Hyun;Bae, Sun-Sik;Hong, Ki-Whan;Choi, Byung-Tae;Shin, Hwa-Kyoung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.647-655
    • /
    • 2011
  • The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells

  • Kim, Yerin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Brain aging is a major risk factor for severe neurodegenerative diseases. Conversely, L-histidine and L-carnosine are known to exhibit neuroprotective effects. The aim of this study was to examine the potential for L-histidine, L-carnosine, and their combination to mediate anti-brain aging effects in neuronal cells subjected to D-galactose-induced aging. MATERIALS/METHODS: The neuroprotective potential of L-histidine, L-carnosine, and their combination was examined in a retinoic acid-induced neuronal differentiated SH-SY5Y cell line exposed to D-galactose (200 mM) for 48 h. Neuronal cell proliferation, differentiation, and expression of anti-oxidant enzymes and apoptosis markers were subsequently evaluated. RESULTS: Treatment with L-histidine (1 mM), L-carnosine (10 mM), or both for 48 h efficiently improved the proliferation, neurogenesis, and senescence of D-galactose-treated SH-SY5Y cells. In addition, protein expression levels of both neuronal markers (β tubulin-III and neurofilament heavy protein) and anti-oxidant enzymes, glutathione peroxidase-1 and superoxide dismutase-1 were up-regulated. Conversely, protein expression levels of amyloid β (1-42) and cleaved caspase-3 were down-regulated. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-8, IL-1β, and tumor necrosis factor-α were also down-regulated. CONCLUSIONS: To the best of our knowledge, we provide the first evidence that L-histidine, L-carnosine, and their combination mediate anti-aging effects in a neuronal cell line subjected to D-galactose-induced aging. These results suggest the potential benefits of L-histidine and L-carnosine as anti-brain aging agents and they support further research of these amino acid molecules.