• 제목/요약/키워드: Amplitude of low-frequency fluctuation

검색결과 8건 처리시간 0.025초

침자극에 의한 안정성 네트워크 변화를 관찰하기 위한 Regional Homogeneity와 Amplitude of Low Frequency Fluctuation의 변화 비교: fMRI연구 (Changes of Regional Homogeneity and Amplitude of Low Frequency Fluctuation on Resting-State Induced by Acupuncture)

  • 여수정
    • Korean Journal of Acupuncture
    • /
    • 제30권3호
    • /
    • pp.161-170
    • /
    • 2013
  • 목적 : 침치료는 침자극을 가한 뒤, 발침한 뒤에 효과를 나타낸다. 그러므로 침연구에 있어서 침자극을 가하고 발침한 뒤에 나타나는 침의 반응을 관찰하여야 할 필요가 있다. 이에 본 연구에서는 안정성 네트워크를 이용하여 침자극 후의 반응을 관찰하여 발침 후에 뇌에 미치는 침의 반응을 관찰하였다. 방법 : 침자극에 의하여 나타나는 안정성 네트워크의 변화를 관찰하기 위하여 기능성 자기공명 영상장치를 사용하여 12명의 건강인을 대상으로 우측 양릉천 혈자리에 자침한 후, 침자극 전후의 뇌를 촬영하였다. 그리고 regional homogeneity(ReHo)와 amplitude of low frequency fluctuation(ALFF)를 이용하여 데이터를 분석하였다. 결과 : ReHo와 ALFF에서 공통적으로 안정성 네트워크가 증가된 영역은 좌우측 중전두이랑, 좌측 내측전두이랑, 좌측 상전두이랑, 그리고 우측 뒤쪽 띠이랑의 뇌부위였다. 특히 ReHo분석 결과 섬엽, 앞쪽 띠이랑과 선조체에서 안정성 네트워크가 증가된 것이 관찰되었는데, 이들 영역은 침의 진통작용과 관련된 영역들이다. 하지만 ALFF 분석결과에서는 이들 영역들이 나타나지 않았다. 결론 : ReHo와 ALFF 모두에서 침자극에 의한 안정성 네트워크의 변화를 관찰할 수 있었다. 또한 ReHo분석을 통하여 침자극에 의한 진통관련 영역들의 반응을 관찰할 수 있었다.

저 주파수 벽면 가진에 의한 밀폐공간 내부 온도장의 공진 특성 실험 (An Experimental Study on Resonance of Temperature Field by Low-Frequency Oscillating Wall in a Side Heated Enclosure)

  • 김서영;김성기;최영돈
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1272-1280
    • /
    • 2001
  • An experimental study has been conducted to elucidate the resonance of natural convection in a side-heated square enclosure having a mechanically oscillating bottom wall. Under consideration is the impact of the imposed oscillating frequency, amplitude and the system Rayleigh number on the fluctuation of air temperatures. The experimental results show that the magnitude of the fluctuation of air temperature is substantially augmented at a specific forcing frequency of the oscillating bottom wall. The resonant frequency is increased with the increase of the Rayleigh number and it is little affected by the amplitude of the oscillating wall. It is also found that the resonant frequency is relevant to the Brunt- V$\"{a}$iS$\"{a}$l$\"{a}$ frequency which represents the stratification degree of the system.

Fluctuation in Plasma Nanofabrication

  • Shiratani, Masaharu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.96-96
    • /
    • 2016
  • Nanotechnology mostly employs nano-materials and nano-structures with distinctive properties based on their size, structure, and composition. It is quite difficult to produce nano-materials and nano-structures with identical sizes, structures, and compositions in large quantities, because of spatiotemporal fluctuation of production processes. In other words, fluctuation is the bottleneck in nanotechnology. We propose three strategies to suppress such fluctuations: employing 1) difference between linear and nonlinear phenomena, 2) difference in time constants, and 3) nucleation as a bottleneck phenomenon. We are also developing nano- and micro-scale guided assembly using plasmas as a plasma nanofabrication.1-5) We manipulate nano- and micro-objects using electrostatic, electromagnetic, ion drag, neutral drag, and optical forces. The accuracy of positioning the objects depends on fluctuation of position and energy of an object in plasmas. Here we evaluate such fluctuations and discuss the mechanism behind them. We conducted in-situ evaluation of local plasma potential fluctuation using tracking analysis of fine particles (=objects) in plasmas. Experiments were carried out with a radio frequency low-pressure plasma reactor, where we set two quartz windows at the top and bottom of the reactor. Ar plasmas were generated at 200 Pa by applying 13.56MHz, 450V peak-to-peak voltage. The injected fine particles were monodisperse methyl methacrylate-polymer spheres of $10{\mu}m$ in diameter. Fine particles were injected into the reactor and were suspended around the plasma/sheath boundary near the powered electrode. We observed binary collision of fine particles with a high-speed camera. The frame rate was 1000-10000 fps. Time evolution of their distance from the center of mass was measured by tracking analysis of the two particles. Kinetic energy during the collision was obtained from the result. Potential energy formed between the two particles was deduced by assuming the potential energy plus the kinetic energy is constant. The interaction potential is fluctuated during the collision. Maximum amplitude of the fluctuation is 25eV, and the average is 8eV. The fluctuation can be caused by neutral molecule collisions, ion collisions, and fluctuation of electrostatic force. Among theses possible causes, fluctuation of electrostatic force may be main one, because the fine particle has a large negative charge of -17000e and the corresponding electrostatic force is large compared to other forces.

  • PDF

Thermal Stratification 해석 난류모델 평가 (Evaluation of Turbulence Models for Analysis of Thermal Stratification)

  • 최석기;위명환;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.221-225
    • /
    • 2004
  • Evaluation of turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The turbulence models tested in the present study are the two-layer model, the $\kappa-\omega$ model, the v2-f model and the low-Reynolds number differential stress-flux model. When the algebraic flux model or differential flux model are used for treating the turbulent heat flux, there exist little differences between turbulence models in predicting the temporal variation of temperature. However, the v2-f model and the low-Reynolds number differential stress-flux model better predict the steep gradient o( temperature at the interface of thermal stratification, and only the v2-f model predicts properly the oscillation of temperature. The LES Is needed for a better prediction of the amplitude and frequency of the temperature fluctuation.

  • PDF

Ripple Analysis and Control of Electric Multiple Unit Traction Drives under a Fluctuating DC Link Voltage

  • Diao, Li-Jun;Dong, Kan;Yin, Shao-Bo;Tang, Jing;Chen, Jie
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1851-1860
    • /
    • 2016
  • The traction motors in electric multiple unit (EMU) trains are powered by AC-DC-AC converters, and the DC link voltage is generated by single phase PWM converters, with a fluctuation component under twice the frequency of the input catenary AC grid, which causes fluctuations in the motor torque and current. Traditionally, heavy and low-efficiency hardware LC resonant filters parallel in the DC side are adopted to reduce the ripple effect. In this paper, an analytical model of the ripple phenomenon is derived and analyzed in the frequency domain, and a ripple control scheme compensating the slip frequency of rotor vector control systems without a hardware filter is applied to reduce the torque and current ripple amplitude. Then a relatively simple discretization method is chosen to discretize the algorithm with a high discrete accuracy. Simulation and experimental results validate the proposed ripple control strategy.

단층대의 전기전도도 변동에 의한 UHF 전자기장 교란 (UHF Electromagnetic Perturbation due to the fluctuation of Conductivity in a Fault Zone)

  • 이춘기;이희순;권병두;오석훈;이덕기
    • 지구물리와물리탐사
    • /
    • 제6권2호
    • /
    • pp.87-94
    • /
    • 2003
  • 지진 발생을 전후로 ULF대역 지자기장의 진폭이 증가하는 현상이 관측 보고 되고 있으며, 그 원인으로서 단층대 전기전도도의 빠른 변동이 거론되고 있다. 즉 단층대 매질에 유도전류가 발생하면 전자기장의 변동이 발생할 수 있다고 하는 것이다. 본 연구에서는 2차원 단층구조 모델에 대한 수치 계산을 통해 전자기장 교란의 발생 가능성을 살펴보았다. 전기전도도가 ULF 대역의 주파수로 진동하면 낮은 주파수의 전자기장들이 ULF 대역의 주파수로 변조되어 좁은 주파수 대역에 중첩됨으로써 상대적으로 큰 전자기장의 교란을 일으킬 가능성이 있다. 단층대의 전기전도도와 형태, 전기전도도 변동의 크기와 주파수, 지각 및 맨틀의 전기비저항 구조, 관측 전자기장 주파수 대역의 폭 등에 의해 전자기장 교란의 관측가능성이 결정됨을 확인할 수 있었다. 지진과 관련된 전자기적 활동의 관측을 위해서는 단층대의 구조 뿐만 아니라 심부 지각의 전기비저항 구조의 연구가 이루어져야 하며, 관측 주파수 대역의 적절한 선택이 필요하다.

COMPUTATION OF AERODYNAMIC SOUNDS AT LOW MACH NUMBERS USING FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

  • Kang H. K;Tsutahara M;Shikata K;Kim E. R;Kim Y. T;Lee Y. H
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.8-15
    • /
    • 2005
  • Aerodynamic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=150 are simulated by applying the finite difference lattice Boltzmann method. Thethird-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives, and the second-order-accurate Runge-Kutta scheme is applied for the time marching. We have succeed in capturing very small pressure fluctuations with the same frequency of the Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r /sup -1/2/,r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence, furthermore, 2D computations of the tone noises radiated by a square cylinder and NACA0012 with a blunt trailing edge at high incidence and low Reynolds number are also investigate.

차분래티스 볼츠만 법을 이용한 저Mach수 흐름에서의 유동소음해석 (Numerical Simulation of Aeroacoustic Noise at Low Mach Number Flows by Using the Finite Difference Lattice Boltzmann Method)

  • Eun-Ra Kim;Jeong-Hwan Kim;Ho-Keun Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.717-727
    • /
    • 2004
  • In this study, we simulate the aerodynamic sounds generated by a two-dimensional circular cylinder in a uniform flow are simulated by applying the finite difference lattice Boltzmann method (FDLBM). The third-order-accurate up-wind scheme (UTOPIA) is used for the spatial derivatives. and the second-order-accurate Runge-Kutta scheme is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuations with the same frequency of the Karman vortex street compared with the Pressure fluctuation around a circular cylinder The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream due to the Doppler effect in the uniform flow For the downstream. on the other hand. it quickly Propagates. It is also apparent that the amplitude of sound Pressure is Proportional to $r^{-1/2}$, r being the distance from the center of the circular cylinder. To investigate the effect of the lattice dependence furthermore a 2D computation of the tone noise radiated by a NACA0012 with a blunt trailing edge at high incidence and low Reynolds number is also investigated.