• Title/Summary/Keyword: Amplitude Ratio

Search Result 960, Processing Time 0.03 seconds

Dependency of Dynamic Behavior of Circular Foundation on Ground and Foundation Characteristics (지반 및 원형기초의 특성이 기초의 동적거동에 미치는 영향)

  • Ahn, Jae-Hun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The effect of characteristics of ground and circular foundation on the dynamic behavior of the foundation in vertical motion are considered using an approximated analytical solution and a finite element analysis with absorbing (consistent transmitting) boundary. The shear wave velocity of homogeneous ground affects the resonant frequency of the foundation much but has nothing to do with the maximum response amplitude at resonant frequency. The density in this case affects both the resonant frequency and the maximum response. The size and the mass of the circular foundation are related both to the resonant frequency and the maximum response. However, Poisson's ratio has very little effect on dynamic behavior of the foundation. When the ground is not homogeneous but has the layers, different formations of shear wave velocities would also change the maximum response at resonant frequency.

A Classification of lschemic Heart Disease using Neural Network in Magnetocardiogram (심자도에서 신경회로망을 이용한 허혈성 심장질환 분류)

  • Eum, Sang-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2137-2142
    • /
    • 2016
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. In this study, the signals obtained magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUID) system, and the clinical significance of various feature parameters has been developed MCG. Neural network algorithm was used to perform the classification of ischemic heart disease. The MCG signal was obtained to facilitate the extraction of parameters through a process of pre-processing. The data used to research the normal group 10 and ischemic heart disease group 10 with visible signs of stable angina patients. The available clinical indicators were extracted by characteristic point, characteristic interval parameter, and amplitude ratio parameter. The extracted parameters are determined to analysis the significance and clinical parameters were defined. It is possible to classify ischemic heart disease using the MCG feature parameters as a neural network input.

Implementation of the Blood Pressure and Blood Flow Variation Rate Detection System using Impedance Method (임피던스법을 이용한 혈압 및 혈류 변화량 검출 시스템 구현)

  • Ro, Jung-Hoon;Bae, Jin-Woo;Ye, Soo-Young;Shin, Bum-Joo;Jeon, Gye-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1926-1938
    • /
    • 2009
  • In this study, detection system of the blood flow variation rate was implemented using the variation effect of bio electric impedance at time of the blood pressure measurement by means of impedance method. The blood pressure measurement was performed by the oscillometric method. The mean arterial pressure was calculated using maximum amplitude algorithm. The systolic and diastolic pressure were estimated by establishment of the various characteristic ratio according to mean arterial pressure range. Alternative static current source and lock_in amplifier were introduced to impedance measurement. The variation of blood volume was measured using variation bio impedance according to induced cuff pressure at measuring area.

A Research About P-type Polycrystalline Silicon Thin Film Transistors of Low Temperature with Metal Gate Electrode and High Temperature with Gate Poly Silicon (실리콘 게이트전극을 갖는 고온소자와 금속 게이트전극을 갖는 P형 저온 다결정 실리콘 박막 트랜지스터의 전기특성 비교 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.433-439
    • /
    • 2011
  • Poly Si TFTs (poly silicon thin film transistors) with p channel those are annealed HT (high temperature) with gate poly crystalline silicon and LT (low temperature) with metal gate electrode were fabricated on quartz substrate using the analyzed data and compared according to the activated grade silicon thin films and the size of device channel. The electrical characteristics of HT poly-Si TFTs increased those are the on current, electron mobility and decrease threshold voltage by the quality of particles of active thin films annealed at high temperature. But the on/off current ratio reduced by increase of the off current depend on the hot carrier applied to high gate voltage. Even though the size of the particles annealed at low temperature are bigger than HT poly-Si TFTs due to defect in the activated grade poly crystal silicon and the grain boundary, the characteristics of LT poly-Si TFTs were investigated deterioration phenomena those are decrease the electric off current, electron mobility and increase threshold voltage. The results of transconductance show that slope depend on the quality of particles and the amplitude depend on the size of the active silicon particles.

MODAL TESTING AND MODEL UPDATING OF A REAL SCALE NUCLEAR FUEL ROD

  • Park, Nam-Gyu;Rhee, Hui-Nam;Moon, Hoy-Ik;Jang, Young-Ki;Jeon, Sang-Youn;Kim, Jae-Ik
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.821-830
    • /
    • 2009
  • In this paper, modal testing and finite element modeling results to identify the modal parameters of a nuclear fuel rod as well as its cladding tube are discussed. A vertically standing full-size cladding tube and a fuel rod with lead pellets were used in the modal testing. As excessive flow-induced vibration causes a failure in fuel rods, such as fretting wear, the vibration level of fuel rods should be low enough to prevent failure of these components. Because vibration amplitude can be estimated based on the modal parameters, the dynamic characteristics must be determined during the design process. Therefore, finite element models are developed based on the test results. The effect of a lumped mass attached to a cladding tube model was identified during the finite element model optimization process. Unlike a cladding tube model, the density of a fuel rod with pellets cannot be determined in a straightforward manner because pellets do not move in the same phase with the cladding tube motion. The density of a fuel rod with lead pellets was determined by comparing natural frequency ratio between the cladding tube and the rod. Thus, an improved fuel rod finite element model was developed based on the updated cladding tube model and an estimated fuel rod density considering the lead pellets. It is shown that the entire pellet mass does not contribute to the fuel rod dynamics; rather, they are only partially responsible for the fuel rod dynamic behavior.

Implementation of Ultrasonic Immersion Technique for Babbitt Metal Debonding in Turbine Bearing (초음파 수침법을 이용한 터빈베어링 Babbitt금속 박리 검사 기술)

  • Jung, Gye-Jo;Park, Sang-Ki;Cho, Yong-Sang;Park, Byung-Cheol;Kil, Doo-Song
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.348-353
    • /
    • 2004
  • This study is aimed for the implementation of ultrasonic method to assess the reliability of turbine bearings. A modified ultrasonic immersion technique was carried out in both laboratory experiment and field application. From the laboratory results, we confirmed that the condition of interface layer between the babbitt and base metal be monitored by the C-Scan. The C-scan image by the ultrasonic immersion test can be used successfully to observe the condition of interface layer. The testing with a focused transducer provides a promising approach for estimating the extent of the damaged region and observing the interface layer effectively. The difference of the ultrasonic reflection ratio between the bonding and debonding area at the interface layer is one of the key parameters for assessing the extent of the damaged area; additionally, the reflection amplitude exhibits a favorable correlation with the overall damage level. The technique developed in this study was applied to the inspection of the turbine bearings at several power plants in Korea whereby the applicability in the field can be ascertained.

Feasibility Study on Diagnosis of Material Damage Using Bulk Wave Mixing Technique (체적파 혼합기법을 이용한 재료 손상 진단 적용 가능성 연구)

  • Choi, Jeongseok;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.53-59
    • /
    • 2016
  • Ultrasonic nonlinear evaluation is generally utilized for detection of not only defects but also microdamage such as corrosion and plastic deformation. Nonlinearity is determined by the amplitude ratio of primary wave second harmonic wave, and the results of its comparison are used for evaluation. Owing to the experimental features, the experimental nonlinearity result contains system nonlinearity and material nonlinearity. System nonlinearity is that which is unwanted by the user; hence, it acts as an error and interrupts analysis. In this study, a bulk wave mixing technique is implemented in order to minimize the system nonlinearity and obtain the reliable analysis results. The biggest advantage of this technique is that experimental nonlinearity contains less system nonlinearity than that for the conventional nonlinear ultrasonic technique. Theoretical and experimental verifications are performed in this study. By comparing the results of the bulk wave mixing technique with those of the conventional technique, the strengths, weaknesses, and application validity of the bulk wave mixing technique are determined.

An Analog Predistortion Linearizer using Series Feedback Structure (직렬 궤환을 이용한 아날로그 전치왜곡 선형화기)

  • Kim, Ell-Kou;Jeon, Ki-Kyung;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.256-262
    • /
    • 2006
  • This paper proposes a new predistortion linearizer to compensate for AM/AM and AM/PM in the nonlinear characteristics of amplifier. This consists of common-emitter amplifier and schottky diode that is connected between emitter and ground. When effective resistance of the schottky diode with bias condition varies, common-emitter amplifier with series feedback has a increase of amplitude and expansion of phase. This makes a amplifier nonlinear characteristics are to be improved. The proposed linearizer and amplifier has been manufactured and tested to operate in cellular base station frequency (869~894MHz). The test results show that third order intermodulation distortion (IMD3) cab be removed by more than 10.4dB in case of CW 2-tone signals ${\Delta}f$=1MHz, and the adjacent channel power ratio (ACPR) also can be improved by more than 9.6dB for CDMA IS-95 1FA signals.

  • PDF

A Study on Polynomial Pre-ditsortion Technique Using PAPR Reduction Methode (OFDM 시스템에서 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Park, Bee-ho;Kim, Wan-tae;Cho, Sung-joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.160-163
    • /
    • 2009
  • HPA is one of the most essential device in wireless communication systems. However, because of nonlinear characteristic of HPA transmit signal is distorted with both amplitude and phase, this distortion leads to deepening adjacent channel interference. So a technique to change the nonlinear characteristic with linear characteristic is needed. In this paper, Among all techniques, we adopts a polynomial pre-distortion technique. Pre-distorted signal by pre-distorter has opposite characteristic with HPA. In result, the signal passed through pre-distorter and HPA has linear characteristic. But the accuracy of opposite characteristic of HPA is decreased at near portion of saturation point. So we improve the accuracy of opposite characteristic of HPA by using PAPR reduction method. In this paper, an adaptive polynomial pre-distortion technique is introduced to counterbalance the nonlinear characteristic of the transmit power amplifier, and a PAPR reduction method is introduced to increase efficiency of polynomial pre-distorter.

  • PDF

Change of Piping-System Dynamics with Installation of Pogo Suppression Device (포고억제장치 설치에 따른 배관계 동특성 변화)

  • Lee Jun Kyoung;Lee Sang Yong;Lee Han Ju;Oh Seung Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.32-39
    • /
    • 2005
  • The effectiveness of the pogo suppression device (PSD) on the response of the piping system simulating the fuel (or oxidizer) supply lines of the rocket engines was investigated. The system response defined as the ratio of the flow rate to the pressure in the main tube was obtained for various PSD gas volumes $((0\~2)\times10^{-3}m^3)$ and three different baffle hole diameters (5, 50, 115mm). Existence of a gas volume in the PSD reduced the system resonance frequency. With a larger gas volume, the resonance frequency became lower, but only slightly, while the fluctuations of the main tube pressure and the flow rate damped down considerably. The resonance frequency decreased with the increase of the PSD inlet restriction (or the decrease of the baffle hole diameter), though slightly. However, with a larger inlet restriction, the PSD pressure wave showed a delayed response with the smaller amplitude compared to the pressure variation in the main tube.