• Title/Summary/Keyword: Amplitude Ratio

Search Result 961, Processing Time 0.024 seconds

Analysis of Oscillometric Model based on Shape of Arterial Pressure (동맥압 형태를 고려한 오실로메트릭 모델분석)

  • 임성수;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 2000
  • This paper describes the analysis of the oscillometric method based on the shape of arterial pressure and proposal of a new algorithm for estimating the blood pressure by computer simulation. In the first step, the arterial pressure model which is able to control the shape of arterial pressure was designed and then we simulated the oscillometric model using both the existing exponential model showing the static arterial pressure-volume relation and the designed arterial pressure model. By analyzing the correlation of characteristic ratio based on the shape of arterial pressure, we could find that the characteristic ratio was not the only standard parameter for estimating systolic and diastolic pressure. We were able to estimate the shape of arterial pressure by computing the correlation of arterial pressure shape with oscillation shape. Finally, we proposed an algorithm which is able to estimate systolic and diastolic pressure according to pressure(Pp) table constructed from the relation of maximum amplitude of oscillation and arterial pressure shape. We tested 60 arterial pressure waveforms having various arterial pressure shape and pulse. As a results, the absolute deviation average values of the estimation of systolic, diastolic and mean pressure were 1.62%, 2.40% and 2.20%, respectively. In conclusions, the proposed algorithm showed the possibility of usefullness in estimating the blood pressure.

  • PDF

Dynamic response of nano-scale plates based on nonlocal elasticity theory (비국소 탄성 이론을 이용한 나노-스케일 판의 강제진동응답)

  • Kim, Jin-Kyu;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.436-444
    • /
    • 2013
  • This article presents the dynamic response of nano-scale plates using the nonlocal continuum theory and higher-order shear deformation theory. The nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Also, the effects of nonlocal parameters, aspect ratio, side-to-thickness ratio, size of nano-scale plate and time step on dynamic response are investigated and discussed. The amplitude and cycle increase when nonlocal parameter increase. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the transient dynamic analysis of nano-scale structures.

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Statistical Properties of Electric Fields Produced by Cloud-to-Ground Lightning Return Strokes

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Seung-Chil;Ahn, Chang-Hwan
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.120-126
    • /
    • 2001
  • For the past five years, Inha University has been observing the electric fields produced by cloud-to-ground return strokes. This paper presents the summary of most recent results. Statistics on the zero-to-peak rise time, the zero-to-zero crossing time and the amplitude ratio of the second peak in the opposite polarity to the first peak were examined. The radiation electric fields produced by distant cloud-to-ground return strokes were substantially same pattern. The first return stroke field starts with a slowly increasing front and rises abruptly to peak. The rising portions of the electric fields produced by cloud-to-ground return strokes last 1 $mutextrm{s}$ to a few $mutextrm{s}$. The mean values of the zero-to-peak rise times of electric fields were 5.72 $mutextrm{s}$ and 4.12 $mutextrm{s}$ for the positive and the negative cloud-to-ground return strokes, respectively. The mean of the zero-to-zero crossing time for the positive return strokes was 29.48 $mutextrm{s}$ compared with 38.54 $mutextrm{s}$ for the negative return strokes. The depths of the dip after the peak of return stroke electric fields also have the dependence on the polarity of cloud-to-ground return stroke, and the mean values for the positive and negative cloud-to-ground return strokes were 33.55 and 28.19%, respectively.

  • PDF

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

Modification of the Cubic law for a Sinusoidal Aperture using Perturbation Approximation of the Steady-state Navier-Stokes Equations (섭동 이론을 이용한 정상류 Navier-Stokes 방정식의 주기함수 간극에 대한 삼승 법칙의 수정)

  • 이승도
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.389-396
    • /
    • 2003
  • It is shown that the cubic law can be modified regarding the steady-state Navier-Stokes equations by using perturbation approximation method for a sinusoidal aperture variation. In order to adopt the perturbation theory, the sinusoidal function needs to be non-dimensionalized for the amplitude and wavelength. Then, the steady-state Navier-Stokes equations can be solved by expanding the non-dimensionalized stream function with respect to the small value of the parameter (the ratio of the mean aperture to the wavelength), together with the continuity equation. From the approximate solution of the Navier-Stokes equations, the basic cubic law is successfully modified for the steady-state condition and a sinusoidal aperture variation. A finite difference method is adopted to calculate the pressure within a fracture model, and the results of numerical experiments show the accuracy and applicability of the modified cubic law. As a result, it is noted that the modified cubic law, suggested in this study, will be used for the analysis of fluid flow through aperture geometry of sinusoidal distributions.

Finite Element Simulation of Elastic Waves for Detecting Defects and Deteriorations in Underwater Steel Plates (수중강판의 결함 및 열화 검출을 위한 탄성파 유한요소 시뮬레이션)

  • Woo, Jinho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.61-66
    • /
    • 2013
  • This paper presents the results of finite element simulations of elastic wave propagation in an underwater steel plate and the verification of a proposed method utilizing elastic wave-based damage detection. For the simulation and verification, we carried out the following procedures. First, three-dimensional finite element models were constructed using a general purpose finite element program. Second, two types of damages (mechanical defects and deteriorations) were applied to the underwater steel plate and three parameters (defect location, defect width, and depth) were considered to adjust the severity of the applied damages. Third, elastic waves were generated using the oblique incident method with a Gaussian tone burst, and the response signals were obtained at the receiving point for each defect or deterioration case. In addition, the received time domain signals were analyzed, particularly by measuring the magnitudes of the maximum amplitudes. Finally, the presence and severity of each type of damage were identified by the decreasing ratios of the maximum amplitudes. The results showed that the received signals for the models had the same global pattern with minor changes in the amplitudes and phases, and the decreasing ratio generally increased as the damage area increased. In addition, we found that the defect depth was more critical than the width in the decrease of the amplitude. This mainly occurred because the layout of the depth interfered with the elastic wave propagation in a more severe manner than the layout of the width. An inverse analysis showed that the proposed method is applicable for detecting mechanical defects and quantifying their severity.

A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate (펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구)

  • Park, Ki-Hoon;Bang, Jeong-Ju;Kim, Ruck-Woan;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.

Performance Comparison of S-MMA Adaptive Equalization Algorithm by Slice Weighting Value in 16-QAM Signal (16-QAM 신호에서 Slice 가중치에 의한 S-MMA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.55-61
    • /
    • 2013
  • This paper compare the performance of S-MMA(Sliced-MultiModulus Algorithm) adaptive equalization algorithm by effect of slice weighting value for the minimization of the distortion and noise in the communication channel.. In the traditional MMA algorithm, the output signal of equalizer and the dispersion constant of transmitting signal is used for calculating the equalizer coefficient, but in S-MMA, the output of equalizer and dispersion constant and the considering the output of decision device by the power of slice constant are used in order to simultaneously compensate the distortion of amplitude and phase distortion. It is confirmed by computer simulation that the slice weighting value affects the performance of adaptive equalization algorithm. The performance index includes the output signal constellation, the residual isi and maximum distortion and MSE that is for the convergence characteristics, the SER according to the signal and noise power ratio at the channel is used. As a result of simulation, the residual isi, maximum distortion and MSE performances are better in the small weighting values. But in SER performance is better in the large weighting values.

Data Convergence of circular Array Correlative Interferometer Direction Finding with 7-Antenna (7-안테나로 구성된 원형배열 상관형 위상비교 방향탐지의 데이터 융합)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, we propose a new method for a correlative phase comparison direction finding(DF) which detects the arrival direction of radio waves by data fusing the calculated phase difference and the measured phase difference between the antennas when the radio waves are incident on the circular array antenna composed of 7 antennas respectively. The correlation type phase comparison method uses a uniform circular array(UCA) and a linear array method. The phase difference data calculated formally and the phase difference data measured in the test environment are fused with a correlation function, therefore, it is superior to the currently used phase comparison direction detection method. When the signal-to-noise ratio (SNR) of the received signal is 20dB and the inter-antenna distance to the wavelength of the received signal($L/{\lambda}$) is 0.5, the accuracy of the correlative DF is $1.7^{\circ}$ while measurement phase comparison's is larger than $2.5^{\circ}$, It can be used for electromagnetic signal monitoring and military direction detection.