• Title/Summary/Keyword: Amperometric detection

Search Result 74, Processing Time 0.025 seconds

Amperometric Determination of Histamine using Immobilized Enzyme Reactors with Different Carriers (담체 고정화 효소 반응기를 이용한 Histamine의 전기화학적 측정)

  • Ji, Jung-Youn;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • Histamine is a kind of primary biogenic amine arising from the decarboxylation of the amino acid L-histidine. The toxicology of histamine and its occurrence and formation in foods are especially emphasized in fermented foods. In this study, the biosensor for detection of histamine with functionalized multi-walled carbon nanotubes (MWCNT) was developed. We also searched for an appropriate insoluble substrate to immobilize the enzyme. The developed biosensor showed a detection limit of $0.1{\mu}M$ hydrogen peroxide. The enzyme reactor was prepared with diamine oxidase immobilized on insoluble carriers including CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads. The coupling efficiency of CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 48.5%, 40.3%, and 51.0%, respectively. In addition, the response currents on histamine with each immobilized enzyme reactor prepared with CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 120 nA, 110 nA, and 140 nA at $100{\mu}M$ of histamine concentration, respectively. Therefore, it is suggested that controlled pore size glass beads are the best carriers for immobilizing diamine oxidase to detect histamine in this biosensor.

Development of Disposable Immunosensors for Rapid Determination of Sildenafil and Vardenafil in Functional Foods

  • Vijayaraj, Kathiresan;Lee, Jun Hyuck;Kim, Hyung Sik;Chang, Seung-Cheol
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • We introduced disposable amperometric immunosensors for the detection of Sildenafil and Vardenafil (SDF/VDF) based on screen printed carbon electrodes. The developed immunosensors were used as a non-competitive sandwich-type enzyme immunoassay with a horseradish peroxidase label. The sensors were constructed on screen printed carbon electrodes by the simple electrochemical deposition of a reduced graphene oxide and chitosan (ErGO-CS) composite. To evaluate the sensing chemistry and optimize the sensor characteristics, a series of electrochemical experiments were carried out including electrochemical impedance spectroscopy, cyclic voltammetry and amperometry. The sensors showed a linear response to SDF/VDF concentrations in a range from 100 pg/mL to 300 ng/mL. The lower detection limit was calculated to be 55 pg/mL, the sensitivity was calculated to be $1.02{\mu}Ang/mL/cm^2$, and the sensor performance exhibited good reproducibility with a relative standard deviation (RSD) of 7.1%. The proposed sensing chemistry strategy and the sensor format can be used as a simple, cost-effective, and feasible method for the in-field analysis of SDF/VDF in functional or health supplement food samples.

Studies on the Changes of Oligosaccharide Contents in Rehmanniae Radix preparata According to Various Processing methods (포제에 따른 숙지황(熟地黃)의 당(糖) 성분 변화 연구)

  • Choi, Ho-Young;Kwon, Seung-Ro;Kim, Hyo-Geun;Ham, In-Hye;Lee, Jae-Jun;Lee, Je-Hyeon;Hong, Seon-Pyo;Kim, Do-Hoon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.261-270
    • /
    • 2007
  • Objective : The 5-HMF was not index material suitable to do the quality control of Rehmanniae Radix Preparata. In this study, We estimated the changes of oligosaccharide contents in Rehmanniae Radix Preparata using high-performance anion-exchange chromatography with pulsed amperometric detection(HPAEC-PAD). Methods : The analysis of oligosaccharide was conducted by HPAEC-PAD with Carbopac PA1, $250{\times}4mm$, 5um, and Carbopac PA1 guard column. Column temperature was kept at $30^{\circ}C$. Elution was carried out at 1000 ${\mu}l/min$ with 70mM NaOH and the injection volume was $10{\mu}l$. Each component was detected by PAD. Results : Nine constituents were found from merchandising Rehmanniae Radix Preparata(MR), while seven constituents were found in various processed Rehmanniae Radix Preparata. Not all constituents were defined but stachyose and raffinose were found in all cases. And The most common constituents of Rehmanniae radix was stachyose. In the course of processing, most of stachyose and raffinose were decreased. Stachyose was decreased slowly in the course of processing with rice wine(RR), amomi and rice wine(AR), and crataegi and rice wine(CR). However stachyose was decreased rapidly in the course of processing with fresh rehmannia juice(FR). The method with crataegi and rice wine(CR) showed the smallest decrease of stachyose. And processing method with crataegi and rice wine(CR) showed the most abundant amount for stachyose after the nineth processing. Conclusion : The changes of oligosaccharides in the course of processing were a very important direct barometers to do the quality control and set up a standard of Rehmanniae Radix Preparata.

  • PDF

Analysis of Amperometric Response to Cholesterol according to Enzyme-Immobilization Methods (효소고정화 방법에 따른 콜레스테롤 검출용 바이오센서의 전류 감응도 분석)

  • Ji, Jung-Youn;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.731-738
    • /
    • 2011
  • Cholesterol is the precursor of various steroid hormones, bile acid, and vitamin D with functions related to regulation of membrane permeability and fluidity. However, the presence of excess blood cholesterol may lead to arteriosclerosis and hypertension. Moreover, dietary cholesterol may affect blood cholesterol levels. Generally, cholesterol determination is performed by spectrophotometric or chromatographic methods, but these methods are very time consuming and costly, and require complicated pretreatment. Thus, the development of a rapid and simple analysis method for measuring cholesterol concentration in food is needed. Multi-walled carbon nanotube (MWCNT) was functionalized to MWCNT-$NH_2$ via MWCNT-COOH to have high sensitivity to $H_2O_2$. The fabricated MWCNT-$NH_2$ was attached to a glassy carbon electrode (GCE), after which Prussian blue (PB) was coated onto MWCNT-$NH_2$/GCE. MWCNT-$NH_2$/PB/GCE was used as a working electrode. An Ag/AgCl electrode and Pt wire were used as a reference electrode and counter electrode, respectively. The sensitivity of the modified working electrode was determined based on the amount of current according to the concentration of $H_2O_2$. The response increased with an increase of $H_2O_2$ concentration in the range of 0.5~500 ${\mu}M$ ($r^2$=0.96) with a detection limit of 0.1 ${\mu}M$. Cholesterol oxidase was immobilized to aminopropyl glass beads, CNBr-activated sepharose, Na-alginate, and toyopearl beads. The immobilized enzyme reactors with aminopropyl glass beads and CNBr-activated sepharose showed linearity in the range of 1~100 ${\mu}M$ cholesterol. Na-alginate and toyopearl beads showed linearity in the range of 5~50 and 1~50 ${\mu}M$ cholesterol, respectively. The detection limit of all immobilized enzyme reactors was 1 ${\mu}M$. These enzyme reactors showed high sensitivity; especially, the enzyme reactors with CNBr-activated sepharose and Na-alginate indicated high coupling efficiency and sensitivity. Therefore, both of the enzyme reactors are more suitable for a cholesterol biosensor system.