Amperometric Determination of Histamine using Immobilized Enzyme Reactors with Different Carriers

담체 고정화 효소 반응기를 이용한 Histamine의 전기화학적 측정

  • Ji, Jung-Youn (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Jeon, Yeon-Hee (Dept. of Food Science and Nutrition, Kyungpook National University) ;
  • Kim, Mee-Ra (Dept. of Food Science and Nutrition, Center for Beautiful Aging, Kyungpook National University)
  • 지정윤 (경북대학교 식품영양학과) ;
  • 전연희 (경북대학교 식품영양학과) ;
  • 김미라 (경북대학교 식품영양학과, 장수생활과학연구소)
  • Received : 2011.12.22
  • Accepted : 2012.02.24
  • Published : 2012.02.29

Abstract

Histamine is a kind of primary biogenic amine arising from the decarboxylation of the amino acid L-histidine. The toxicology of histamine and its occurrence and formation in foods are especially emphasized in fermented foods. In this study, the biosensor for detection of histamine with functionalized multi-walled carbon nanotubes (MWCNT) was developed. We also searched for an appropriate insoluble substrate to immobilize the enzyme. The developed biosensor showed a detection limit of $0.1{\mu}M$ hydrogen peroxide. The enzyme reactor was prepared with diamine oxidase immobilized on insoluble carriers including CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads. The coupling efficiency of CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 48.5%, 40.3%, and 51.0%, respectively. In addition, the response currents on histamine with each immobilized enzyme reactor prepared with CNBr-activated sepharose 4B, calcium alginate, and controlled pore size glass beads were 120 nA, 110 nA, and 140 nA at $100{\mu}M$ of histamine concentration, respectively. Therefore, it is suggested that controlled pore size glass beads are the best carriers for immobilizing diamine oxidase to detect histamine in this biosensor.

Histamine은 발효식품, 등푸른 생선 등 단백질이 많이 함유된 식품에서 잘 생성되는 물질로 이들 식품의 부패 시에는 다량의 histamine이 발생되어 이를 섭취하였을 때 독성을 일으킬 수 있기 때문에 histamine은 어육식품의 선도 저하 또는 부패의 지표로서 사용된다. 따라서 본 연구에서는 신속하며 정확한 histamine 검출을 위한 바이오센서 시스템을 구축하기 위하여 기능화된 MWCNT와 Prussian blue를 사용한 전극을 제작하였으며, 여러 불용성 담체에 효소를 고정화시켜 바이오센서 시스템에 적합한 불용성 담체를 확인하기 위한 연구를 수행하였다. MWCNT-$NH_2$와 Prussian blue가 도입된 전극의 과산화수소에 대한 감응도를 확인한 결과, 검출한계는 $0.1{\mu}M$으로 나타났으며, 각 담체의 효소 고정화도를 측정한 결과, CNBr-activated sepharose 4B는 48.5%, calcium alginate는 40.3%, controlled pore size glass beads는 51.0%를 보였다. 또한 CNBr-activated sepharose 4B, calcium alginate, controlled pore size glass beads로 제작된 효소반응기의 $100{\mu}M$ histamine에 대한 전극 감응도는 각각 120 nA, 110 nA, 140 nA로 나타났다. 따라서 담체의 coupling efficiency, 제작된 효소반응기의 전극 감응도, 선형 관계 등을 고려해 보았을 때 controlled pore size glass beads가 본 연구에서 구축된 바이오센서 시스템에서 가장 적합한 담체인 것으로 확인되었다. 이로써 이들 작업전극과 효소반응기로 구축된 바이오센서는 histamine을 감도 높고 신속하게 측정할 수 있는 것으로 나타났다.

Keywords

References

  1. Ahn JW, Park KW, Seo JH (1998) Continuous production of isomaltooligosaccharides by immobilized transglucosidase in a packed-bed reactor. Kor J Food Sci Technol 30: 110-117.
  2. Bang BH, Lee SG, Yang CY (1989) Calcium alginate-entrapped yeast whole-cell invertase (II. Enzymatic properties of the immobilized cells). Korean J Food & Nutr 2: 14-20.
  3. Bhushan I, Parshad R, Qazi GN, Ingavle G, Rajan CR, Ponrathnam S, Gupta VK (2008) Lipase enzyme innobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates. Process Biochem 43: 321-330. https://doi.org/10.1016/j.procbio.2007.11.019
  4. Botre F, Botre C, Lorenti G, Mazzei F, Porcelli F, Scibona G (1993) Plant tissue biosensors for the determination of biogenic diamines and of their amino acid precursors: effect of carbonic anhydrase. Sensor Actuat B Chem 15: 135-140. https://doi.org/10.1016/0925-4005(93)85039-D
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing rhe principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Chae KY, Lee CH, Cho TY, Kang MC, Bahn KN, Son YW, Jang MR, Han GH (2005) Biogenic amine contents in korean commercial foods. The Annual Report of KFDA 9: 115-116.
  7. David GS, Chino TH, Reisfeld RA (1974) Binding of proteins to CNBr-activated sepharose 4B. FEBS Letters 43: 264-266. https://doi.org/10.1016/0014-5793(74)80657-5
  8. Eom JH, Kim JH, Joo IS, Byun JA, Park YG, Seo DM, Lee EM, Heo OS (2006) Survey of the biogenic amines in commercial fermented alcoholic beverages in Korea. The Annual Report of KFDA 10: 187-188.
  9. Gomez JL, Bodalo A, Gomez E, Bastida J, Hidalgo AM, Gomez M (2006) Immobilization of peroxidases on glass beads: an improved alternative for phenol removal. Enzyme Microb Technol 39: 1016-1022. https://doi.org/10.1016/j.enzmictec.2006.02.008
  10. Ji JY, Kim MR (2011) Analysis of amperometric response to cholesterol according to enzyme-immobilization methods. J East Asian Soc Dietary Life 21: 731-738.
  11. Jin G, Du S, Hu X (2009) The potentiometric determination of peroxidehydrogen and glucose on the glassyelectrode modified by the calix[4]arene. Talanta 80: 858-863. https://doi.org/10.1016/j.talanta.2009.08.005
  12. Karube I, Hara K, Satoh I, Suzuki S (1979) Amperometric determination of phosphatidyl choline in serum with use of immobilized phospholipase D and choline oxidase. Anal Chim Acta 106: 243-250. https://doi.org/10.1016/S0003-2670(01)85007-8
  13. Karube I, Satoh I, Araki Y, Suzuki S (1980) Monoamine oxidase electrode in freshness testing of meat. Enzyme Microb Technol 2: 117-120. https://doi.org/10.1016/0141-0229(80)90066-6
  14. Karyakin AA, Gitelmacher OV, Karyakina EE (1994) A highsensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Anal Lett 27: 2861-2869. https://doi.org/10.1080/00032719408000297
  15. Katchalski-Katzir E, Kraemer DM (2000) Eupergit${(R)}$ C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B: Enzym 10: 157-176. https://doi.org/10.1016/S1381-1177(00)00124-7
  16. Kim JW, Jeon YH, Kim MR (2010) Determination of biogenic amines an amperometric biosensor with a carbon nanotube electrode and enzyme reactor. J East Asian Soc Dietary Life 20: 735-742.
  17. Kim KS, Choi HS, Park HJ, Lee JK (2007) Comparison of drug release profile in chitosan-adsorbed bead: Silver sulfadiazine and serum albumin. J Chitin Chiosan 12: 81-87.
  18. Li J, Peng T, Peng Y (2003) A cholesterol biosensor based on entrapment of cholesterol oxidase in a silicic sol-gel matrix at a prussian blue modified electrode. Electroanal 15: 1031-1037. https://doi.org/10.1002/elan.200390124
  19. Mattos IL, Gorton L, Ruzgas T (2003) Sensor and biosensor based on Prussian blue modified gold and platinum screen printed electrodes. Biosens Bioelectron 18: 193-200. https://doi.org/10.1016/S0956-5663(02)00185-9
  20. Moscone D, D'ottavi D, Compagnone D, Palleschi G (2001) Construction and analytical characterization of Prussian blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal Chem 73: 2529-2535. https://doi.org/10.1021/ac001245x
  21. Raoofa JB, Ojania R, Hasheminejada E, Rashid-Nadimib (2011) Electrochemical synthesis of Ag nanoparticles supported on glassy carbon electrode by means of p-isopropyl calix [6]arene matrix and its application for electrocatalytic reduction of $H_2O_2$. Appl Surf Sci doi:10.1016/j.apsusc.2011. 10.133.
  22. Ricci F, Goncalves C, Amin A, Gorton L, Palleschi G, Moscone D (2003) Electroanalytical study of Prussian blue modified glassy carbon paste electrodes. Electroanal 15: 1204-1211. https://doi.org/10.1002/elan.200390148
  23. Santhosh P, Manesha KM, Gopalan A, Lee KP (2006) Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide. Analytica Chimica Acta 575: 32-38. https://doi.org/10.1016/j.aca.2006.05.075
  24. Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29: 675-690. Shirashi S, Imai T, Otagiri M (1993) Controlled release preparation of indomethacin using calcium alginate gel. Biol Pharm Bull 16: 1164-1168. https://doi.org/10.1248/bpb.16.1164
  25. Shirashi S, Imai T, Otagiri M (1993) Controlled release preparation of indomethacin using calcium alginate gel. Biol Pharm Bull 16: 1164-1168. https://doi.org/10.1248/bpb.16.1164
  26. Suh CW, Kang KY, Lee HS, Ahn SJ, Lee EK (2000) Fusion protein cleavage by urokinase covalentley immobilized to activated sepharose gels. Korean J Biotechnol Bioeng 15: 42-48.
  27. Taylor SL, Eitenmiller RR (1986) Histamine food poisoning: toxicology and clinical aspects. CRC Crit Rev Toxicol 17: 91-128. https://doi.org/10.3109/10408448609023767
  28. Ten Brink B, Damink C, Joosten HMLJ, Huis in't Veld JHJ (1990) Occurrence and formation of biologically active amines in foods. Int J Food Microbiol 11: 73-84. https://doi.org/10.1016/0168-1605(90)90040-C
  29. Won KH, Kim SB, Kim KJ, Park HW, Moon SJ (2005) Optimization of lipase entrapment in Ca-alginate gel beads. Process Biochem 40: 2149-2154. https://doi.org/10.1016/j.procbio.2004.08.014
  30. Wu S, Zhao H, Ju H, Shi C, Zhao J (2006) Electrodeposition of silver DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem 8: 1197-1203.
  31. Yilmaz E, Can K, Sezgin M, Yilmaz M (2011) Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxin methyl ester. Bioresour Technol 102: 499-506. https://doi.org/10.1016/j.biortech.2010.08.083
  32. Zhai J, Zhai Y, Wen D, Dong S (2009) Prussian blue/multiwalled carbon nanotube hybrids: Synthesis, assembly and electrochemical behavior. Electroanal 20: 2207-2212.