• Title/Summary/Keyword: AmpC $\beta$-lactamase

Search Result 8, Processing Time 0.027 seconds

Characterization of Noble AmpC-Type $\beta$-Lactamases Among Clinical Isolates Using New Expression/Secretion Vector (발현ㆍ분비 벡터 및 임상 균주가 생성하는 신규 AmpC-type $\beta$-lactamase의 특성)

  • 정하일;성광훈;이정훈;장선주;이상희
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2004
  • To determine evolution and genotype of new chromosomal AmpC $\beta$-lactamases among clinical isolates of Enterobacter species, we performed antibiotic susceptibility testing, pI determination, sequencing, and phy-logenetic analysis using developed expression/secretion vector. Six isolates have shown to produce AmpC $\beta$-lactamases. Six genes of AmpC $\beta$-lactamases that are responsible for the resistance to cephamycins (cefoxitin and cefotetan), amoxicillin, cephalothin, and amoxicillin-clavulanic acid were cloned and characterized in pMSG12119. Insert fragment containing the ampC genes was sequenced and found to have an open reading frame coding for 381-amino-acid $\beta$-lactamase. The nucleotide sequence of four ampC genes ($bla_EcloK992004.l$, $bla_EcloK995120.1$, $bla_EcloK99230$, and $bla_EareK9911729$) shared considerable homology with that of chromosomal ampC gene ($bla_EcloMHN1$) of E. cloacae MHN1 (more than 99.6% identity). The sequences of two ampC genes ($bla_EcloK9973$ and $bla_EcloK9914325$) showed close similarity to the chromosomal ampC gene ($bla_EcloQ908R$) of E. clo-acae 908R (99.7% identity). The results from phylogenetic analysis suggested that six ampC genes could be originated from $bla_EcloMHN1$ / or $bla_EcloQ908R$ / MIC patterns and exact pI values of six transformants indicated that the developed expression/secretion vector (pMSG1219) was suitable for the characterization of foreign genes in E. coli strain.

Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea

  • Cho, Hye Hyun;Kwon, Gye Cheol;Kim, Semi;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1154-1162
    • /
    • 2015
  • The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-$\beta$-lactamases (MBLs) and AmpC $\beta$lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of $\beta$-lactamases and characterized chromosomal AmpC $\beta$lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various $\beta$-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = $256{\mu}g/ml$) and cefepime (MIC50 = $256{\mu}g/ml$). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC $\beta$-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of $\beta$-lactamases.

Community-acquired Extended-spectrum and Plasmid-mediated ampC Beta-lactamase-producing Multidrug-resistant Enterobacter cloacae Septicaemia in a Cat with Euthyroid Sick Syndrome (정상 갑상샘 질환 증후군 고양이의 지역사회획득 광범위 및 플라스미드 유래 ampC beta-lactamase 양성 다약제내성 Enterobacter cloacae 패혈증)

  • Han, Jae-Ik;Na, Ki-Jeong
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.191-195
    • /
    • 2015
  • A 7-year-old castrated male Korean Shorthair cat was referred with lethargy and anorexia. Laboratory examination revealed moderate degenerative changes of peripheral neutrophils on blood smear examination and decreased levels of free and total thyroxine ($T_4$) as well as bacterial growth on blood culture. Molecular analyses of the 16S ribosomal RNA gene and heat shock protein 60 gene confirmed the bacterium as Enterobacter cloacae. A minimal inhibitory concentration test showed multidrug resistance of the bacterium against 16 antibiotics. Polymerase chain reaction (PCR) and subsequent sequencing specifically for $bla_{TEM}$, $bla_{SHV}$, $bla_{CTX-M}$, and plasmid-mediated ampC genes revealed positive results to $bla_{TEM-1}$, $bla_{CTX-M-15}$, and plasmid-mediated $bla_{ACT-1}$ genes, indicating that the isolated bacterium contains plasmids containing genes encoding extended-spectrum beta-lactamase and plasmid-mediated ampC beta-lactamase. After 1 month of treatment with antibiotics and levothyroxine, the cat's condition improved; both the thyroid function test and the blood culture showed no abnormalities. This is the first report of community-acquired multidrug-resistant E. cloacae-induced euthyroid sick syndrome in a cat. By the prompt diagnostic procedures and properly selected antibiotic therapy, the cat was recovered from the multidrug-resistant bacterium-induced septicaemia.

Prevalence of Extended Spectrum $\beta-Lactamase-Producing$ Clinical Isolates of Escher­ichia coli in a University Hospital, Korea (국내 대학병원에서 분리된 Eschepichia coli의 Extended-spectrum $\beta-Lactamase$ (ESBL) 현황)

  • Lee Kyenam;Kim Woo-Joo;Lee Yeonhee
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.295-301
    • /
    • 2004
  • Recently, the rapid increase and global spread of extended-spectrum $\beta-lactamase$ producing clinical isolates has become a serious problem. The incidence of extended-spectrum $\beta-lactamase$ producing clinical isolates of Escherichia coli in Korea and susceptibility to antimicrobial agents were investigated. Total 233 isolates of E. coli were obtained from urine from hospitalized patients in Guro hospital, Korea University in 2001. One hun­dred and eighty four isolates $(78.9\%)$ were resistant to ampicillin, 80 isolates $(34.3\%)$ were resistant to ceph­alothin, 93 isolates $(39.9\%)$ were resistant to gentamicin, and 64 isolates $(27.5\%)$ were resistant to norfloxacin. Among 233 isolates, 17 isolates $(7.3\%)$ were positive as determined by the double disk synergy test. When min­imal inhibitory concentrations were assayed with additional 6 antimicrobial agents, 13 isolates $(76.5\%)$ were multi-drug resistant to at least four different class antimicrobial agents. Extended-spectrum $\beta-lactamase$ were characterized with isoelectric focusing gel electrophoresis and DNA sequencing. They were TEM-1 in 5 iso­lates, TEM-15 in 1 isolate, TEM-20 in 1 isolate, TEM-52 in 4 isolates, TEM-1 and AmpC in 2 isolates, TEM-1 and OXA-30 in 1 isolate, TEM-1 and OXA-33 in 1 isolate, TEM-1, CTX-M-3, and AmpC in 1 isolate, but SHV was not detected. Antimicrobial resistance genes were transferred to animal isolate of E. coli (CCARM No. 1203) by the filter mating method. Extended spectrum $\beta-lactamase$ producers studied in the current study have low correlation to each other as determined by random amplified polymorphic DNA and pulsed field gel elec­trophoresis. This is a contradictory result from the general hypothesis that extended-spectrum $\beta-lactamase$ pro­ducers in one hospital is a result from a clonal spread.

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.

Draft Genome Sequence of Meropenem-Resistant Pseudomonas peli CJ30, Isolated from the Han River, South Korea (대한민국 한강에서 분리된 메로페넴 내성 Pseudomonas peli CJ30의 유전체 서열 초안)

  • Yong-Seok Kim;Chang-Jun Cha
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.214-216
    • /
    • 2023
  • Meropenem-resistant Pseudomonas peli CJ30 was isolated from the Han River, South Korea. The genome of strain CJ30 comprising 4,919,106 bp with a G + C content of 60.0% was assembled to nine contigs. The draft genome sequence contained 5,411 protein-coding genes, 18 rRNA genes, and 70 tRNA genes. Strain CJ30 contained blaSFC-3 and ampC β-lactamase gene.

Molecular Characterization and Prevalence of 16S Ribosomal RNA Methylase Producing Bacteria in Amikacin Resistant Gram-negative Bacilli Isolated from Clinical Specimens

  • Shin, Kyung-A;Hwang, Seock-Yeon;Hong, Seung-Bok
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.299-306
    • /
    • 2012
  • Recently, the prevalence of 16S rRNA methylase conferring high-level resistance to aminoglycosides has been increasing in Gram-negative bacilli globally. We determined the prevalence and genotype of these methylase-producing bacteria, and characterized the co-resistance to ${\beta}$-lactam antibiotics and quinolone in Gram-negative clinical isolates collected in 2010 at a hospital in Korea. Among 65 amikacin-resistant isolates screened from 864 Gram-negative bacilli (GNB), 16S rRNA methylase genes were detected from 49 isolates, including Acinetobacter baumannii (43), Klebsiella pneumoniae (2), Proteus mirabilis (2) and Serratia marcescens (1), Empedobacter brevis (1). All of the 16S rRNA methylase genotype was armA and no variant sequences of amplified PCR products for armA were noted. The 16S rRNA methylase producing bacteria showed much higher resistance to aminoglycoside for Enterobacteriaceae and glucose non-fermenting (NF)-GNB and to imipenem for glucose NF-GNB, than the non-producing isolates. All of the 16S rRNA methylase producing Enterobacteriaceae had the extended-spectrum-${\beta}$-lactamase. In addition, two K. pneumoniae concurrently produced both plasmid-mediated AmpC ${\beta}$-lactamase and qnrB gene. All of the amikacin-resistant A. baumannii (43) co-harbored armA 16S rRNA methylase and $bla_{OXA-23}$ carbapenemase. In conclusion, 16S rRNA methylase producing bacteria were very prevalent among GNB in South Korea, and were commonly associated with co-resistance, including carbapenem and quinolone.

Incidence of Escherichia coli and Its Susceptibility to Antimicrobials in Childhood Urinary Tract Infection (소아 요로감염에서 Escherichia coli의 빈도와 항생제 감수성에 대한 연구)

  • Chi Hye-Mi;Kwahk Jae-Hyok;Lee Jun-Ho;Park Hye-Won
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.18-26
    • /
    • 2006
  • Purpose : Empirical antimicrobial treatment is indicated before bacteriological results are available for young children with febrile UTI to minimize renal scarring. To ensure appropriate therapy, knowledge of the prevalence of causative organisms and their susceptibility patterns to antimicrobials is mandatory. We performed a retrospective analysis investigating the local prevalence and resistance patterns of uropathogens, primarily E. coli, isolated from community-acquired UTIs. Methods : A total of 103 positive urine cultures from children with febrile UTI collected at Bundang CHA General Hospital from February 2004 to February 2005 were analyzed. Inclusion criteria were fever higher than $37.5^{\circ}C$, significant bacteriuria with single strain growth of at least 10s colony forming units/mL urine, and leukocyturia >5/HPF. Results : E. coli(89.3%) was the leading uropathogen followed by Enterococcus spp.(3.9%) Klebsiella spp.(2.9%), Citrobctcter spp.(1.9%) and Enterobacter spp.(1.9%). E. coli strains revealed a low proportion of antimicrobial susceptibility to ampicillin(AMP; 27.2%) ampicillinsulbactam(AMS; 34.8%) and trimethoprim-sulfamethoxazole(SXT; 65.2%). Susceptibility patterns to cephalosporins were as follows; cefazolin(1st generation; 91.3%), cefoxitin(2nd; 100%), ceftriaxone(3rd; 97.8%) and cefepime(4th; 97.8%). Three E. coli isolates produced ex tended - spectrum beta-lactamase(ESBL). Conclusion : Empirical treatment with AMP, AMS and SXT, which are commonly used in pediatric clinics, is not recommended for childhood UTI due to high incidence of resistance. The high level of susceptibility to cephalosporins makes these drugs reasonable alternatives. However the emergence of ESBL-producers, even though they are quite few, may have an impact on cephalosporin treatment in the future. (J Korean Soc Pediatr Nephrol 2006;10:18-26)

  • PDF