• 제목/요약/키워드: Amount of irrigation

검색결과 368건 처리시간 0.04초

우리나라 북부권역 시설재배 고추의 물절약형 관개 기준 설정 연구 (Water Saving Irrigation Manual of House Red Pepper for the Northern Region of Korea)

  • 엄기철;박소현
    • 한국토양비료학회지
    • /
    • 제45권2호
    • /
    • pp.312-316
    • /
    • 2012
  • 1. 우리나라 북부 8개 지역을 대상으로 하여 최근 30년간의 기상자료 분석에 의한 12월~6월의 일평균 PET는 $2.31mm\;day^{-1}$ 이었다. 2. 시설재배 고추의 우리나라 북부 8개 지역별, 3개 토성 및 16개 순별, 총 384경우의 재배여건에 적합한 물 절약형 적정 관개간격 및 1회 관개량을 산정하였다.

파프리카 재배에서 계절별 광환경 조건과 증산량 예측에 근거한 관수공급 기준 제시 (Irrigation Criteria based on Estimated Transpiration and Seasonal Light Environmental Condition for Greenhouse Cultivation of Paprika)

  • 신종화;손정익
    • 생물환경조절학회지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2015
  • 파프리카는 수분에 민감한 작물이므로 작물의 생산성 향상을 위하여 적정 관수조절은 매우 중요하다. 광환경 조건은 시설재배에서 여러 환경 변수 중 조절이 용이하지 못하며, 지역 별, 계절 별 분포가 다르기 때문에 광환경 데이터를 이용한 증산과 관수의 추정이 필요하다. 본 연구에서는 파프리카의 정확한 증산 예측을 위하여 변형된 증산 추정식을 활용하였다. 또한 기상청의 광도자료를 활용하여 지역 별 증산량과 관수량을 비교하였다. 우리나라의 경우 여름철 하루 중 광도의 편차가 심하고 장마기간이 있으므로 봄, 가을에 비하여 증산량이 오히려 낮았다. 그리고 광주기가 길어지는 봄에 증산량이 가장 많았으므로, 이 시기의 데이터를 이용하여 관수시설 용량을 지역별로 제시할 수 있었다. 이러한 결과는 시설재배에서 관수설비 기준제시를 위한 자료 및 투입에너지 최적화에도 유용하게 활용될 것으로 판단된다.

관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보 (Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams)

  • 이주용;김선주;김필식
    • 한국농공학회논문집
    • /
    • 제48권2호
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.

田作物 水分消費量 調査 硏究 (Studies on the Consumptive Use of Irrigated Water in Upland)

  • 김시원;이경희;도덕현
    • 한국농공학회지
    • /
    • 제26권2호
    • /
    • pp.47-58
    • /
    • 1984
  • The study results of the mosture consumption character and irrigation effect of tomato, red pepper and chinese cabbage, in case the soil moisture is kept with different moisture content by the soil properties(loam, sandy loam, sand), are summarized as follows: 1. The available rainfall under bare soil condition had an order of sand>sandy loam> loam and their average was 64.2%. 2. Total moisture consumption under bare soil condition had an order of loam>sandy loam>sand and their average was 4.2mm. 3. The amount of irrigated water to keep certain soil moisture under bare soil condition showed minimum in sand and maximum in loam. It is considered because the capillary phenomenon was more developed in loam. 4. Total moisture consumption of tomatoes under premature cultivation showed 925mm in maximum and had on order of loam>sandy loam>sand. In the aspect of re-irrigation point, it had an order of PF 1.5> PF 1.7>PF 2.1. In case the twenty years's drought frequency was taken into account, the target amount of irrigation water meeded for premature cultivation was 916mm and its average daily moisture consumption was 10.8mm. 5. Total moisture consumption of red pepper under open cultivation showed 1145mm in maximum and had an order of loam>Sandy loam>sand. In the aspect of re-irrigation frequency was taken into consideration the target amount of irrigation water was 1,174.8mm and its average daily moisture consumption was 8.0mm. 6. Total moisture consumption of autumn chinese cabbages was 349mm in maximum and had an order of loam>sandy loam>sand. In the aspect of re-irrigation point, it had an order of PF 1.5>PF 2.1>PF 2.7. In case the twenty year's drought frequency was taken into account, the target amount of irrigation water needed for chinese cabbage cultivation was 259.5mm and its average daily moisture consumption was 6.5mm. 7. It is effective to keep the soil moisture of tomato from PF 1.5 to PF 2.1 in loam and the soil moisture control was effective in sandy loam than red pepper and chinese cabbage. In sand, the production was severaly decreased and the re-irrigation point of PF 1.5 was effective.

  • PDF

간척지 밭작물의 관개용수량 추정을 위한 토양염분예측모형 개발 (Soil Salt Prediction Modeling for the Estimation of Irrigation Water Requirements for Dry Field Crops in Reclaimed Tidelands)

  • 손재권;구자웅;최진규
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.96-110
    • /
    • 1994
  • The purpose of this study is to develop soil salt prediction model for the estimation of irrigation water requirements for dry field crops in reclaimed tidelands. The simulation model based on water balance equation, salt balance equation, and salt storage equation was developed for daily prediction of sa]t concentration in root zone. The data obtained from field measurement during the growing period of tomato were used to evaluate the applicability of this model. The results of this study are summarized as follows: 1.The optimum irrigation point which maximizes the crop yield in reclaimed tidelands of silt loam soil while maintaining the salt concentration within the tolerance level, ws found to be pF 1.6, and total irrigation requirement after transplanting was 602mm(6.7 mm/day)for tomato. 2.When the irrigation point was pF 1.6, the deviation between predicted and measured salt concentration was less than 4 % at the significance level of 1 7% 3.Since the deviations between predicted and measured values data decrease as the amount of irrigation water increases, the proposed model appear to be more suitable for use in reclaimed tidelands. 4.The amount of irrigation water estimated by the simulation model was 7.2mm/day in the average for cultivating tomato at the optimum irrigation point of pF 1.6.The simulation model proposed in this study can be generalized by applying it to other crops. This, model, also, could be further improved and extended to estimate desalinization effects in reclaimed tidelands by including meteorological effect, capillary phenomenon, and infiltration.

  • PDF

동진지구 관개용수로의 손실률 및 관개효율 분석 (Analysis of Water Loss Rate and Irrigation Efficiency in Irrigation Canal at the Dong-Jin District)

  • 홍은미;최진용;남원호;이상현;최진규;김진택
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.93-101
    • /
    • 2015
  • The purpose of this study is to evaluate the paddy irrigation efficiency using real-time water level monitoring data and intermittent irrigation model in Gimjae, Dong-Jin irrigation district. For this study, the real-time water level data in Gimjae main canal and other secondary canals were collected from 2012 to 2014 and converted to daily discharge using rating curve in each canal. From intermittent irrigation model in paddy, irrigation water requirement was estimated and irrigation efficiency was calculated. The average amount of irrigation water supply per unit irrigation area was 1,011 mm in Gimjae main canal for 12,749 ha irrigation area, 1,011 mm in the secondary canal of upper region and 1,470 mm in the secondary canal of lower region. The median irrigation loss was 43 % in Gimjae main canal, 25 % in secondary canal of upper region and 35 % in the secondary canal of lower region. The larger irrigation area is, the irrigation loss rates tend to decrease in secondary canals. Monthly median irrigation losses in upper region were 10 (June) - 40 % (September) and those in lower region were 25 (May) to 40 % (April, June, August, and September). The results of canal management loss can be available as the basic data for irrigation water management and estimating guideline of optimal irrigation water supply to improve agricultural water use efficiencies.

봄배추의 물 절약형 관개기준 설정 (Water Saving Irrigation Manual of Spring Chinese Cabbage)

  • 엄기철;정필균;고문환;김상희;유성녕;박소현;허승오;하상건
    • 한국토양비료학회지
    • /
    • 제43권6호
    • /
    • pp.812-822
    • /
    • 2010
  • 1. 우리나라 전국을 45개 지역으로 구분하여 최근 30년간의 기상자료 분석에 의한 5월~6월의 일평균 PET는 2.99 mm $day^{-1}$ 이었다. 2. 토성별 유효토양수분보유량 (AWS)은 사양토 16.0%~미사질양토 24.7% 범위이었다. 3. 봄배추의 45개 지역별, 3개 토성 및 5개 순별, 총 675경우의 재배여건에 적합한 물 절약형 적정 관개간격 및 1회 관개량을 산정하였다.

Sustainable Management of Irrigation Water Withdrawal in Major River Basins by Implementing the Irrigation Module of Community Land Model

  • Manas Ranjan Panda;Yeonjoo Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2023
  • Agricultural water demand is considered as the major sector of water withdrawal due to irrigation. The majority part of the global agricultural field depends on various irrigation techniques. Therefore, a timely and sufficient supply of water is the most important requirement for agriculture. Irrigation is implemented in different ways in various land surface models, it can be modeled empirically based on observed irrigation rates or by calculating water supply and demand. Certain models can also calculate the irrigation demand as per the soil water deficit. In these implementations, irrigation is typically applied uniformly over the irrigated land regardless of crop types or irrigation techniques. Whereas, the latest version of Community Land Model (CLM) in the Community Terrestrial Systems Model (CTSM) uses a global distribution map of irrigation with 64 crop functional types (CFTs) to simulate the irrigation water demand. It can estimate irrigation water withdrawal from different sources and the amount or the areas irrigated with different irrigation techniques. Hence, we set up the model for the simulation period of 16 years from 2000 to 2015 to analyze the global irrigation demand at a spatial resolution of 1.9° × 2.5°. The simulated irrigation water demand is evaluated with the available observation data from FAO AQUASTAT database at the country scale. With the evaluated model, this study aims to suggest new sustainable scenarios for the ratios of irrigation water withdrawal, high depending on the withdrawal sources e.g. surface water and groundwater. With such scenarios, the CFT maps are considered as the determining factor for selecting the areas where the crop pattern can be altered for a sustainable irrigation water management depending on the available withdrawal sources. Overall, our study demonstrate that the scenarios for the future sustainable water resources management in terms of irrigation water withdrawal from the both the surface water and groundwater sources may overcome the excessive stress on exploiting the groundwater in major river basins globally.

  • PDF

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

Type Selection of Sediment Desilting Machines in Yellow River Irrigation System

  • Wang, Huazhong;Dang, Yongliang
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.257-262
    • /
    • 1996
  • Large amount of water is diverted annually for irrigation along the Yellow River. Owing to the tremendous sediment carried by the river , sediment deposits is an important problem in irrigation and drainage system. The sediment has to be taken out by machines from the irrigation system, otherwise water can not be available in the right place at the right time. In order to improve the sediment desilting efficiency, the sediments that settle in certain sites of a irrigation system must be removed by different desilting machines with special performance and working conditions. Those certain sites include : the diversion canal in the flood plain , the mouth of inlet, settling basin , irrigation and drainage system. In view of removal sediment above, the paper presents the ideas of type selection of desilting machines applied to certain sites. Proposals of making further improvement on performance for some desilting machines are also put forward.

  • PDF