• 제목/요약/키워드: Amount of Snowfall

검색결과 64건 처리시간 0.02초

복합 센서의 상태 판정 알고리즘을 적용한 노면결빙 예측 및 강설 감지 시스템 개발에 관한 연구 (Study on the Development of Road Icing Forecast and Snow Detection System Using State Evaluation Algorithm of Multi Sensoring Method)

  • 김종우;정영우;남진원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제17권5호
    • /
    • pp.113-121
    • /
    • 2013
  • 본 연구의 복합 센서의 상태 판정 알고리즘을 적용한 노면결빙 예측 및 강설 감지 시스템은 기존 단일 센서 만을 이용하던 기존 방식에서 벗어나, 접촉식/비접촉식 센서 및 적외선 카메라를 통합 운영하여 분사 시스템의 분사 시기와 융설액 분사량을 최적 제어한다. 시스템에 적용된 상태 판정 알고리즘은 취득한 온/습도 데이터와 수분 감지 데이터, 관측된 도로 영상의 영상처리기술 등을 이용하여 노면결빙 위험상태와 강설 상태 뿐만 아니라 강설 강도까지 구분하여 판정을 수행한다. 제작된 시스템의 현장 적용 실험에서는 강설 상태 감지율 89% 습윤 상태 감지율 94%의 우수한 판정 결과와 신뢰성을 검증하였다.

블로킹에 의한 2014년 2월 동해안 지방 폭설 분석 (Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking)

  • 배정호;민기홍
    • 대기
    • /
    • 제26권2호
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

극저기압에 의한 한반도 강설 발달기구 분석 (Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low)

  • 김진연;민기홍
    • 한국지구과학회지
    • /
    • 제34권7호
    • /
    • pp.645-661
    • /
    • 2013
  • 본 연구에서는 2010년 12월 27일부터 28일까지 서울을 포함한 수도권 지역에 많은 강설을 일으킨 사례의 종관적, 열역학적 및 역학적 특징을 조사하였다. 이 사례는 극저기압으로 분류할 수 있는 특성을 지녔다. 분석에 사용된 자료는 지상 및 상층 일기도, 강설량, 해수면온도, 위성사진, 연직프로파일 및 미국 국립환경예측센터의 전구 $1^{\circ}{\times}1^{\circ}$ 재분석자료 등이다. 극저기압은 대기 하층에서 양의 경압성이 강하게 나타나며 925 hPa에 온난이류가, 700 hPa에 한랭이류가 있어 조건부 불안정층이 뚜렷하게 보이는 곳에서 형성되는 것으로 사료된다. 극저기압의 발달기구는 대류권계면 접힘에 의한 성층권 공기의 유입과 그에 따른 위치 소용돌이도의 증가로 하층에 수렴과 저기압성 순환의 유발에 기인한다. 이는 눈구름의 발달로 이어져 서울 지역에는 10 cm, 남부지방에는 최고 20 cm까지 적설을 보였다. 강설의 발달기간동안 상층 500 hPa에는 $-45^{\circ}C$의 한랭핵이 존재하였고 단파골과 지상 기압골간의 위상차도 $3-5^{\circ}$를 이루어 극저기압이 온난역의 저기압성 소용돌이도 이류 지역에서 발달할 수 있었다. 발달의 최성기에는 역학적 대류권계면이 700 hpa까지 하강하였고 위치소용돌이도의 증가로 상승기류도 강화되었다. 전반적으로 강설의 발생과 대류권계면의 파상운동과는 깊은 관련을 보였다. 극저기압이 한반도를 통과하는 동안 대류권계면이 하강하는 지점의 동쪽에 소용돌이도와 상승기류가 강화되었고 동시에 많은 습기가 이류되는 곳에서 강설량도 최대로 나타났다.

영동과 영남 지역에서 발생한 두 대설의 발달 메커니즘 비교 (Comparison of Development Mechanisms of Two Heavy Snowfall Events Occurred in Yeongnam and Yeongdong Regions of the Korean Peninsula)

  • 박지훈;김경익;허복행
    • 대기
    • /
    • 제19권1호
    • /
    • pp.9-36
    • /
    • 2009
  • Two heavy snowfall events occurred in Yeongnam and Yeongdong regions of the Korean Peninsula during the period from 4 to 6 March 2005 are analyzed. The events were developed by two different meso-scale snow clouds associated with an extratropical low passing over the Western Pacific. Based on synoptic data, GOES-9 satellite images, and precipitation amount data, the events were named as Sokcho and Busan cases, respectively. We analyzed the development mechanism of the events using meterological variables from the NCEP(National Centers for Environmental Prediction) /NCAR(National Centers for Atmospheric Research) reanalysis data such as potential vorticity(PV), divergence, tropopause undulation, static stability, and meridional wind circulation. The present analyses show that in the case of Sokcho, the cyclonic circulation in the lower atmosphere in the strong baroclinic region induced the cyclonic circulation in the upper atmosphere. The cyclonic circulation in the lower and upper atmosphere caused a heavy snowfall in the Sokcho region. In the case of Busan, the strong cyclonic circulation in the upper atmosphere was initiated by the stratospheric air intrusion with the high positive PV into the troposphere during the tropopause folding. The upper strong cyclonic circulation enhanced the cyclonic circulation in the lower disturbed atmosphere due to the extratropical low. This lower cyclonic circulation in turn, intensified the upper cyclonic circulation, that caused a heavy snowfall in the Busan region.

영동대설 예보지원시스템 개발 (Development of Yeongdong Heavy Snowfall Forecast Supporting System)

  • 권태영;함동주;이정순;김삼회;조구희;김지언;지준범;김덕래;최만규;김남원;남궁지연
    • 대기
    • /
    • 제16권3호
    • /
    • pp.247-257
    • /
    • 2006
  • The Yeong-dong heavy snowfall forecast supporting system has been developed during the last several years. In order to construct the conceptual model, we have examined the characteristics of heavy snowfalls in the Yeong-dong region classified into three precipitation patterns. This system is divided into two parts: forecast and observation. The main purpose of the forecast part is to produce value-added data and to display the geography based features reprocessing the numerical model results associated with a heavy snowfall. The forecast part consists of four submenus: synoptic fields, regional fields, precipitation and snowfall, and verification. Each offers guidance tips and data related with the prediction of heavy snowfalls, which helps weather forecasters understand better their meteorological conditions. The observation portion shows data of wind profiler and snow monitoring for application to nowcasting. The heavy snowfall forecast supporting system was applied and tested to the heavy snowfall event on 28 February 2006. In the beginning stage, this event showed the characteristics of warm precipitation pattern in the wind and surface pressure fields. However, we expected later on the weak warm precipitation pattern because the center of low pressure passing through the Straits of Korea was becoming weak. It was appeared that Gangwon Short Range Prediction System simulated a small amount of precipitation in the Yeong-dong region and this result generally agrees with the observations.

취약인자의 엔트로피 기반 중첩 분석을 이용한 부산광역시의 적설재해 취약지역 등급 평가 (Evaluating Vulnerability to Snowfall Disasters Using Entropy Method for Overlapping Distributions of Vulnerable Factors in Busan, Korea)

  • 안찬중;박용미;최원식
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.217-229
    • /
    • 2020
  • 최근 한반도는 지구온난화로 기상이변 현상이 심화되고 있으며, 그 중 우리나라에서 주로 발생하는 5대 자연재해는 호우, 태풍, 풍랑, 대설, 지진 등이 있다. 부산광역시는 광역시 이상의 도시 자연재해 피해액 중 50% 이상을 차지하고 도심 속 구릉성 산지가 다수 분포하여 적설재해에 매우 취약한 구조를 가지고 있다. 따라서 본 연구는 부산지역을 중심으로 지리정보시스템(GIS)을 이용하여 지형적 특성과 인위적 특성을 함께 고려한 적설재해 위험지역을 선정하였다. 재해취약 지역의 평가요소(표고, 경사도, 토지피복, 도로, 인구통계)에 가중치를 부과하기 위해 엔트로피 방법을 이용하였으며, 가중치가 부과된 평가요소 지도를 중첩하여 위험1-5등급으로 위험도를 산정하였다. 중첩된 격자별 위험등급을 정책결정이나 정보제공의 편의성을 위해 읍·면·동 단위로 평균하여 단순화된 적설재해 취약지도를 추가 분석하였다. 재해 취약지역은 산지를 중심으로 도로가 분포하는 지역 주변에 분포한다는 특징이 있으며, 도로 통제 빈도가 높았던 금정구의 산성로, 북구의 만덕터널, 수영구의 황령산로에 위험지역이 포함되어 본 분석의 신뢰성을 확인하였다. 이와 같은 방법론은 직관적이고 사용하기 쉬우며 취약인자의 추가나 개선에 대한 업데이트가 용이하기 때문에 다른 재해나 환경위험도 분석에도 쉽게 적용이 가능하다는 장점이 있다.

TIGGE 자료를 이용한 2012년 12월 28일 한반도 강설사례 예측성 연구 (Predictability Study of Snowfall Case over South Korea Using TIGGE Data on 28 December 2012)

  • 이상민;한상은;원혜영;하종철;이정순;심재관;이용희
    • 대기
    • /
    • 제24권1호
    • /
    • pp.1-15
    • /
    • 2014
  • This study compared ensemble mean and probability forecasts of snow depth amount associated with winter storm over South Korea on 28 December 2012 at five operational forecast centers (CMA, ECMWF, NCEP, KMA, and UMKO). And cause of difference in predicted snow depth at each Ensemble Prediction System (EPS) was investigated by using THe Observing system Research and Predictability EXperiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data. This snowfall event occurred due to low pressure passing through South Sea of Korea. Amount of 6 hr accumulated snow depth was more than 10 cm over southern region of South Korea In this case study, ECMWF showed best prediction skill for the spatio-temporal distribution of snow depth. At first, ECMWF EPS has been consistently enhancing the indications present in ensemble mean snow depth forecasts from 7-day lead time. Secondly, its ensemble probabilities in excess of 2~5 cm/6 hour have been coincided with observation frequencies. And this snowfall case could be predicted from 5-day lead time by using 10-day lag ensemble mean 6 hr accumulated snow depth distribution. In addition, the cause of good performances at ECMWF EPS in predicted snow depth amounts was due to outstanding prediction ability of forming inversion layer with below $0^{\circ}C$ temperature in low level (below 850 hPa) according to $35^{\circ}N$ at 1-day lead time.

영동지역 기상조건이 구름 및 강설 모의에 미치는 영향: 이상 실험 기반의 사례 연구 (Effects of Meteorological Conditions on Cloud and Snowfall Simulations in the Yeongdong Region: A Case Study Based on Ideal Experiments)

  • 김유준;안보영;김백조;김승범
    • 대기
    • /
    • 제31권4호
    • /
    • pp.445-459
    • /
    • 2021
  • This study uses a cloud-resolving storm simulator (CReSS) to understand the individual effect of determinant meteorological factors on snowfall characteristics in the Yeongdong region based on the rawinsonde soundings for two snowfall cases that occurred on 23 February (Episode 1) and 13 December (Episode 2) 2016; one has a single-layered cloud and the other has two-layered cloud structure. The observed cloud and precipitation (snow crystal) features were well represented by a CReSS model. The first ideal experiment with a decrease in low-level temperature for Episode 1 indicates that total precipitation amount was decreased by 19% (26~27% in graupel and 53~67% in snow) compared with the control experiment. In the ideal experiment that the upper-level wind direction was changed from westerly to easterly, although total precipitation was decreased for Episode 1, precipitation was intensified over the southwestern side (specifically in terrain experiment) of the sounding point (128.855°E, 37.805°N). In contrast, the precipitation for Episode 2 was increased by 2.3 times greater than the control experiment under terrain condition. The experimental results imply that the low-level temperature and upper-level dynamics could change the location and characteristics of precipitation in the Yeongdong region. However, the difference in precipitation between the single-layered experiment and control (two-layered) experiment for Episode 2 was negligible to attribute it to the effect of upper-level cloud. The current results could be used for the development of guidance of snowfall forecast in this region.

THE USE OF QUICKS CAT WIND TO ESTIMATE THE VERTICAL VELOCITY IN TYPHOON AND SNOWSTORM

  • Heol Ki-young;Ha Kyung-Ja;Lee Dong-Kyu;Jeong Jin-Yong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.54-57
    • /
    • 2005
  • This study examines moisture supplement from the warm ocean in snowfalls of two cases and heavy rainfall of Typhoon case. The QuickSCAT wind is used to evaluate the convergence of moisture fluxes in the storms from the sea in estimation of the amount of heavy snowstorm and rainfall. The results show that enough water vapor transport from ocean to atmosphere induced the severe storms, because strong QuickSCAT -derived vertical velocity nearly concurred with heavy snowfall and rainfall. In the present study, we attempted to show that QuickSCAT wind can be used to forecast the severe weather events, such as heavy snowfall and rainfalls.

  • PDF

적설한랭지역에서 콘크리트의 내구성 (Durable of Concrete in Snowfall and Cold Regions)

  • 이병덕;정해문;윤병성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.221-224
    • /
    • 2005
  • In order to traffic safety during winter season, snowfall and cold area has been spread the deicing chemicals, and the spraying amount is increasing every year. Use of deicing chemicals has been and will continue to be a major part of highway snow and ice control methods. Chloride-containing chemicals such as calcium chloride or rock salt are main deicers for the road. Extensive use of chloride deicers is, however, the source of substantial cost penalties due to their corrosive action and acceleration to deterioration concrete structures. Deterioration due to de-icer salt occurs in practice in concrete pavement, dike, barrier and similar structure. This paper reports the results of effect of de-icer salt on durability of concrete structure in winter. To protect concrete structure from damage by de-icer salt in winter, the exposure test was performed using three methods such as increase in design strength upto 35MPa application of granulated blast furnace slag powder, and concrete sealer. Of these, the method of increase in design strength upto 35MPa showed better durability for deterioration by de-icer salt.

  • PDF