• 제목/요약/키워드: Amount of Heat

검색결과 2,365건 처리시간 0.034초

지하공기열 히트펌프 제습기에 관한 실험적 연구 (An Experimental Study on a Heat Pump with Dehumidification Function that Utilizes Underground Air Heat)

  • 고지운;박윤철;고광수
    • 설비공학논문집
    • /
    • 제26권2호
    • /
    • pp.55-60
    • /
    • 2014
  • The present study has been conducted to develope a heating system for a green house with heat from underground air at Jeju Island. The temperature of the air deposited in the underground is $16{\sim}18^{\circ}C$ throughout the year, and it also has a large amount of moisture. Therefore, the air could not directly used for the heating of a green house. In this study, a heat pump with dehumidification function has been developed, which consisted of three evaporators, where the moisture removal occurs, accompanied by temperature drop. The dropped temperature is recovered, while passing through a series condenser. The air temperature increased from $17^{\circ}C$ to 35 with a 2.1 kg/h of moisture removal rate. The developed system moisture removal performance shows 0.91 kg/kWh.

$Ca(OH)_2/CaO$계 화학 열펌프에 있어서 고체 반응층의 전열해석 (Numerical Analysis of Heat Transfer in Packed Bed of $Ca(OH)_2/CaO$ for Chemical Heat Pump)

  • 김종식
    • 태양에너지
    • /
    • 제17권1호
    • /
    • pp.67-77
    • /
    • 1997
  • 본 연구는 에너지 밀도와 승온효과가 큰 화학 열펌프시스템 개발을 위해 무기 수화물계인$Ca(OH)_2/CaO$ 원주형 충전층내 핀을 주입 전열 촉진한 경우에 있어서 반응촉진 효과의 이론적 평가를 행하였다. 그 결과 충전층내 수화 탈수 반응시 반응층내 시간에 따른 온도 분포변화 및 반응율 분포에 대한 수치 해석 결과 전열핀 주입에 따른 반응완결 시간이 절반이하로 줄일 수 있다고 한 실험결과와 잘 일치됨을 알 수 있었다. 또한 해석결과 열화학 반응은 주로 온도 및 농도에 의존하였고 경계조건과 입자 충전층의 열전도에 의해 크게 좌우됨을 알 수 있었다.

  • PDF

Effects of Condensation Heat Transfer Model in Calculation for KNGR Containment Pressure and Temperature Response

  • Eoh, Jae-Hyuk;Park, Shane;Jeun, Gyoo-Dong;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.241-253
    • /
    • 2001
  • Under severe accidents, the pressure and temperature response has an important role for the integrity of a nuclear power plant containment. The history of the pressure and temperature is characterized by the amount and state of steam/air mixture in a containment. Recently, the heat transfer rate to the structure surface is supposed to be increased by the wavy interface formed on condensate film. However, in the calculation by using CONTAIN code, the condensation heat transfer on a containment wall is calculated by assuming the smooth interface and has a tendency to be underestimated for safety. In order to obtain the best- estimate heat transfer calculation, we investigated the condensation heat transfer model in CONTAIN 1.2 code and adopted the new forced convection correlation which is considering wavy interface. By using the film tracking model in CONTAIN 1.2 code, the condensate film is treated to consider the effect of wavy interface. And also, it was carried out to investigate the effect of the different cell modelings - 5-cell and 10-cell modeling - for KNGR(Korean Next Generation Reactor) containment phenomena during a severe accident. The effect of wavy interface on condensate film appears to cause the decrease of peak temperature and pressure response . In order to obtain more adequate results, the proper cell modeling was required to consider the proper flow of steam/air mixture.

  • PDF

알루미나에 생체유리의 코팅시 결합의 특성 (Bonding Behavior of Bioglass Coated Alumina)

  • 김정구;김철영
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.925-933
    • /
    • 1990
  • The possible use of bioglass,, which is one of the surface active biomaterials, as implants materials has drawn great attention due to their ability to bond to human living tissue. In the present work, the investigation was carried out to find the bonding phenomena between alumina substrate and bioglass(45S5) or fluorine-containing bioglass(45S5$.$4F), and the properties of coated bioglass. The stable bonding between alumina and bioglass was formed when heat-treated at 1150$^{\circ}C$ for 120 minutes or at 1250$^{\circ}C$ for 30 minutes for the 45S5, and at 1150$^{\circ}C$ for 30 minutes for the 45S5$.$4F. When bioglass coated alumina was heat-treated, great amount of Al was diffused into bioglass from alumina substrate. More Al was diffused into fluorine-containing bioglass than into bioglass without fluorine. At early stage of heat-tretment, the diffused alumina content was increased with the square root of time and it was also increased with the thickness of coating layer and heat-treatment temperatures. The alumina content became constant after its saturation for longer heat-treatment time. Coated bioglasses were crystallized to Na2O$.$CaO$.$3SiO2 when heat-treated at lower temperature, and to CaO$.$SiO2 at higher temperature.

  • PDF

연료 고온물성을 고려한 초음속 연소기 재생냉각 유로 설계 (Regenerative Cooling Channel Design of a Supersonic Combustor Considering High-Temperature Property of Fuel)

  • 양인영
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.37-46
    • /
    • 2018
  • 초음속 연소기에 대해 연료에 의한 연소기 재생 냉각을 가정하여 재생 냉각 유로 형상 설계를 수행하였다. 준일차원 모델을 사용하여 고온 측 및 저온 측 유동 계산을 수행하였으며 이 과정에서 양쪽 사이의 열전달을 계산하였다. 기준 형상에서 총 열교환량은 10.7 kW, 열유속은 $566kW/m^2$, 열교환기 입출구에서의 연료 온도 변화는 153 K으로 계산되었다. 7개의 열교환기 유로 형상에 대하여 열전달 성능을 비교하였다.

소형 냉각식 천정형 제습기의 증발기 전면 풍속에 관한 연구 (A Study on Evaporator Front Air Velocity of Small Refrigeration Ceiling Dehumidifier)

  • 김진철;정경태;금종수;김동규
    • 수산해양교육연구
    • /
    • 제28권4호
    • /
    • pp.1107-1113
    • /
    • 2016
  • In the environment with high humidity causes negative influence on human's body and living condition. As the weather gets more humid, people's interest of dehumidifier for household arising recently. The cooling dehumidifier dehumidify the air by using refrigeration cycle technology which means it removes vapor by let the humid air pass through the cold surface. The amount dehumidified of refrigerating method dehumidifier affected by multiple factors. However, the refrigerating method dehumidifier for household in the market controls pass wind velocity technology to adjust the amount of dehumidification. As the pass wind velocity increases, the amount of wind increases hence the heat exchange amount increases accordingly. However, the amount of dehumidification decreases because the temperature difference between the air and vaporization decreases. Therefore, simply by increasing air velocity does not increase the amount of dehumidification. This research examined the effect of air velocity out of all variety of factors to the amount of dehumidification for refrigerating method dehumidifier.

EP 케이블 고무의 전기적 열화 특성 (Electric Degraded Properties of EP Cable Rubber)

  • 이성일;배덕권;김상현;이종필;오용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.516-517
    • /
    • 2008
  • The ethylene-propylene (EP) rubbers mixed with one to one ratio is used as an insulation material in the nuclear power plant. It was investigated the effect of the amount of reinforcing agent. moisture absorption and heat treatment on the Ethylene-Propylene(EP) rubbers. The level of degradation was measured by the amount of discharging and. charging currents. When $\gamma$ rays were radiated on the EP rubbers with more charging material, the amount of discharging and charging currents was depended on the amount of reinforcing agent It was verified that the discharging and charging currents irradiated by $\gamma$ rays were higher than those that was not irradiated.

  • PDF

제 2종 LiBr-H2O 흡수식 히트펌프의 운전 변수에 따른 성능 특성 수치 해석 (Effects of Operation Conditions on the Performance of Type II LiBr-H2O Absorption Heat Pump)

  • 윤준성;권오경;차동안;배경진;김인관;김민수;박찬우
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 2017
  • This study carried out a numerical analysis of the effects of hot waste water supply on the performance of a Type II absorption heat pump. There are two types of hot waste water supply, regular series flow and reverse series flow. Also it investigated the interaction between each type of flow and heat exchange solutions. As the effectiveness of heat exchange solutions increase, the steam generation and (COP) increase as well. If the effectiveness of a heat exchange solution is lower than 0.566, the steam generation rate of the reverse flow is lower than that of the regular series flow. A high effectiveness of heat exchange solution is therefore required to make a larger amount of steam in reverse series flow than with ordinary series flow. The COP difference between the two types of flow decreases with the increasing effectiveness of the heat exchange solution. Thus, a reverse flow type absorption heat pump can match the high steam generation rate and COP of the ordinary flow type when a highly effective heat exchange solution is applied.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

SiCp입자강화 Al 복합재료의 내열 및 마모특성 (Heat and Wear Resistance Characterization of SiCp Reinforced Al Matrix Composites)

  • 김석원;김완기;우기도;안행근
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.377-385
    • /
    • 2000
  • Al matrix composites as the most promising MMCs can be expected to be excellent engineering materials in the nearest future. So as to improve material properties of composite, many manufacturing processes have been developed. Among them, squeeze casting process which offers fine microstructure and near-net-shape is one of the most successful MMCs manufacturing processes. But, in case of with subsieve size particles (under 44 ${\mu}m$), it is very difficult to homogeneously distribute particles in matrix of Al matrix composite by various casting processes, including squeeze casting used so far. Duplex process which was developed in previous study was used to distribute the particle of subsieve size more homogeneously in matrix of Al matrix composite. Microstructures, wear and heat resistance characterization of Al-Si-Cu-Mg-(Ni)/SiCp manufactured by duplex process were examined to clarify the effect of manufacturing conditions, particle size of reinforcement and alloying elements. Al matrix composites reinforced with SiCp(10 ${\mu}m$) have the lowest wear amount among composites reinforced with 3 ${\mu}m$, 5 ${\mu}m$ and 10 ${\mu}m$ SiCp. The wear amount of Al matrix composites with 10 wt.% SiCp(3, 5, 10 ${\mu}m$) was decreased according to the increase of the sliding speed because abrasive wear takes place at high sliding speed of 4m/s and worn debris with block type occurs at low sliding speed of 1m/s. As for heat resistance, it is made clear that remarkable heat resistance property can be obtained by addition of Ni element in Al matrix composites.

  • PDF