• Title/Summary/Keyword: Amorphous powders

Search Result 235, Processing Time 0.024 seconds

Magnetic Properties of Amorphous FeCrSiBC Alloy Powder Cores Using Phosphate-coated Powders

  • Jang, Dae-Ho;Kim, Kwang-Youn;Noh, Tae-Hwan
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.126-129
    • /
    • 2006
  • The phosphate coating on the $(Fe_{0.97}Cr_{0.03})_{76}(Si_{0.5}B_{0.5})_{22}C_2$ amorphous powders with an average size of 10 ${\mu}m$ in diameter has been carried out in aqueous 1.0-2.0 wt% $H_3PO_4$ solutions, and the consolidation behavior and magnetic properties of their compressed powder cores has been investigated. The phosphate coating could provide efficient electrical insulation between amorphous powders and improved consolidation ability at room temperature. Especially when the powders were treated in more concentrated phosphoric acid solution, enhanced phosphate covering and higher frequency/dc-bias stability were achieved. The powder cores phosphate-coated in 2.0 wt% $H_3PO_4$ solution exhibited constant permeability of 21 up to 10 MHz, 110 of the quality factor at 0.9 MHz, 610 mW/cm3 core loss at 100 kHz/0.1 T and 89 of percent permeability at 100 kHz.

Synthesis of Ultrafine Silicon Nitride Powders by the Vapor Phase Reaction (기상반응에 의한 $Si_3N_4$ 미세분말의 합성)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.44-49
    • /
    • 2000
  • Silicon nitride powders, were synthesized by the vapor phase reaction using SiH4-NH3 gaseous mixture. The reaction temperature, ratio of NH3 to SiH4 gas and the overall gas quantity were varied. The synthesized powders were characterized using X-ray, TEM, FT-IR and EA. The synthesized silicon nitride powders were in amorphous state, and the average particle size was about 100nm. TEM analysis revealed that the particle size decreased with increasing reaction temperature and gas flow quantity. As-received amorphous powders were annealed in nitrogen atmosphere at 140$0^{\circ}C$ for 2h, then the powders were completely crystallized at 0.2 ratio of NH3 to SiH4.

  • PDF

Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders (Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성)

  • Kim Taek-Soo;Lee Jin-Kyu;Kim Hwi-Jun;Bae Jung-Chan
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

Crystallization behavior of W35Fe43C22 amorphous alloy powders (W35Fe43C22 비정질 합금분말의 결정화 거동)

  • Kwon, Young Jun;Yoo, Jung Sun;Park, Soo Keun;Lee, Keun Hyo;Cho, Ki Sub
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.165-170
    • /
    • 2018
  • W, Fe, and carbon powders were mechanical alloyed to produce $W_{35}Fe_{43}C_{22}$ ternary alloy powders containing nanocrystal W embedded within amorphous matrix. When the powder samples were heated to the primary crystallization temperature of $735^{\circ}C$, most parts of their amorphous region were fully crystallized to [W,Fe]-rich $M_6C$ carbides. Interestingly, a little portion of the carbides changes to stoichiometric line compounds ($M_{12}C$ and $W_6Fe_7$) and a solution phase (Fe-rich bcc), and remaining parts of the crystallites were amorphized again. The resulting microstructure was retained even by cyclic heating between room temperature of $1,200^{\circ}C$, and thus we found that the amorphous structure can be irreversibly formed at above glass transition temperature.

The Magnetic Properties of Amorphus Phase in Mechanically Alloyed $Fe_{50}Zr_{50}$ Powders (기계적 합금화한 비정질 $Fe_{50}Zr_{50}$ 분말의 자기특성)

  • 이성의;나형용;김원태;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Amorphous $Fe_{50}Zr_{50}$ alloy has been manufactured by mechanical alloying from pure elemental powders of Fe and Zr in conventional ball mill under an Ar atmosphere. Structure and magnetic properties of the amorphous phase were studied by transmission electron microscopy and SQUID magnetometry. Selected area diffraction patterns taken from the mechanically alloyed powders showed two halo rings, indicating coexistence of Fe rich and Zr rich amorphous phases in mechanically alloyed powder. Curie temperature of the Fe rich amorphous phase, measured by Arrot plot, was 195 K. Fe content in the ferromagnetic amorphous phase, estimated from the Curie temperature, was about 65 at%. Spin wave stiffness constant of $Fe_{50} Zr_{50}$ alloys processed for 100 and 200 hrs were 52.2 and 63.8 meV, respectively. The higher spin wave stiffness constant in 200 hrs milled powders may arise from the precipitation of $\alpha$-Fe by partial crystallization of amorphous phase.

  • PDF

Soft-magnetic Characteristics of Co-based Amorphous Powder Produced by Spinning Water Atomization Process (SWAP)

  • Otsuka, I.;Wada, K.;Watanabe, A.;Kadomura, T.;Yagi, M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.784-785
    • /
    • 2006
  • Co-based amorphous powder was produced by a new atomization process "Spinning Water Atomization Process (SWAP)", having rapid super-cooling rate. The composition of the alloys was ($(Co_{0.95}Fe_{0.05})_{1-x}Cr_x$)$_{75}Si_{15}B_{10}$ (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about $500{\mu}m$. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was $350kW/m^3$.

  • PDF

Amorphization Process of Cr-N Alloy System by Mechanical Alloying (기계적 합금화에 의한 Cr-N계 합금의 비정질화 과정)

  • 이충효;이성희;이상진;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.288-293
    • /
    • 2003
  • Mechanical alloying (MA) by high energy ball mill of Pure chromium Powders was carried out under the nitrogen gas atmosphere. Cr-N amorphous alloy powders have been produced through the solid-gas reaction subjected to MA. The atomic structure during amorphization process was observed by X-ray and neutron diffractions. An advantage of the neutron diffraction technique allows us to observe the local atomic structure surrounding a nitrogen atom. The coordination number of metal atoms around a N atom turns out to be 5.5 atoms. This implies that a nitrogen atom is located at both of centers of the tetrahedron and octahedron formed by metal atoms to stabilize an amorphous Cr-N structure. Also, we have revealed that a Cr-N amorphous alloy may produced from a mixture of pure Cr and Cr nitrides powders by solid-solid reaction during mechanical alloying.

Mechanical Properties of Rapidly Solidified Al-Ni-Mm Alloy Powders Consolidated by Extrusion (급속응고 Al-Ni-Mm 합금분말 압출재의 기계적 성질)

  • 김형섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.100-103
    • /
    • 1998
  • In this study, Al-Ni-Mm alloy has been produced by a gas atomization technique and consolidated by a powder extrusion method. The powders showed mixed structures of amorphous, fcc-Al phases and intermetallics. Each phase shows different size and quantity with different size of the powders due to the higher cooling rate of the finer powders. Because of the difference of the microstructure, the powders with the different size show differences of the mechanical properites of the powders and extrudates.

  • PDF

Effects of Sintering Additives on the Microstructure Development in Silicon Oxynitride Ceramics

  • Kim, Joosun;Chen, I-Wei
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.224-228
    • /
    • 2000
  • Using a small amount of additives and amorphous Si₂N₂O powders, O-SiAlON ceramics have been hot-pressed and its microstructure and mechanical properties were investigated. Scandium oxide was demonstrated to be an effective densification additive for O-SiAlON. Amorphous Si₂N₂O was densified at relatively low temperatures and a microstructure with acicular grains was developed. Fine grains found in materials obtained from amorphous powders suggest that nucleation and crystallization of O-SiAlOH is relatively easy compared with the Si₃N₄-SiO₂reaction.

  • PDF

Mechanical Properties of 6061Al Extruded Composite with Ti-Ni-Cu Fabricated by Ball milling (Ball milling을 이용하여 제조된 6061Al기지 Ti-Ni-Cu 압출재의 기계적특성)

  • 안인섭;배승열;김유영
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.270-276
    • /
    • 1999
  • Ti-Ni-Cu alloy powders were fabricated by ball milling, and the properties of these powders were characterized. Mixed 50Ti-(50-x)Ni-xCu powders of 5 to 10at.%Cu composition were milled for 100 hours using SUS 1/4" balls in argon atmosphere. Ball to powder ratio was 20:1 and rotating speed was 100 rpm. Tensile strength, microstructure and phase transformation of ball milled Ti-(50-x)Ni-xCu powders were studied. After 100 hours milling, Ti, Ni and Cu elements were alloyed completely and an amorphous phase was formed. Amorphous phase was crystallized to martensite(B 19') and austenite(B2) after heat treatment for 1 hour at $850^{\circ}C$. As the Cu contents were increased, tensile strength of extruded 6061Al/TiNiCu was decreased, and B19'martensite phases In the TiNi particles were the causes of high tensile stress of extruded 6061Al/TiNiCu.NiCu.

  • PDF