• Title/Summary/Keyword: Amorphous metal powder

Search Result 47, Processing Time 0.024 seconds

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

A Study on the EM Wave Absorption Characteristics of Amorphous Metal Powder and Sendust Absorbers for RFID System (RFID 시스템용 Amorphous Metal Powder 및 Sendust 흡수체의 전파흡수 특성 연구)

  • Choi, Dong-Soo;Yoo, Gun-Suk;Choi, Dong-Han;Kim, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.159-160
    • /
    • 2010
  • In this paper, we compared the absorption abilities of AMP and Sendust EM wave absorbers for a port logistics RFID system. Firstly, we fabricated EM wave absorber samples by using each absorbing material, AMP or Sendust, and CPE (Chlorinated Polyethylene) with composition ratios 85 : 15 wt. %. Secondly, we designed the optimum EM wave absorber using the calculated material constants found from the measured input impedance of the samples. Therefore, we confirmed that imaginary factor of complex relative permeability influences absorption ability and that AMP is better absorbing material than Sendust at the frequency band of 433 MHz.

  • PDF

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Nanocomposite Magnetic Materials

  • Ludwig Schultz;Alberto Bollero;Axel Handstein;Dietrich Hinz;Karl-Hartmut Muller;Golden Kumar;Juergen Eckert;Oliver Gutfleisch;Anke Kirehner Aru Yan
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.381-393
    • /
    • 2002
  • Recent developments in nanocrystalline and nanocomposite rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning, mold casting and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated. With respect to high temperature applications melt spun $Sm(Co_{0.74}Fe_{0.1}Cu_{0.12}Zr_{0.04})_{7.5}$ ribbons were prepared, which showed coercivities of up to 0.53 T at 50$0^{\circ}C$. Partially amorphous $Nd_{60}Fe_xCo_{30-x}Al_{10}(0{\leq}x{\leq}30)$ alloys were prepared by copper mold casting. The effect of transition metal content on the glass-forming ability and the magnetic properties was investigated. The $Nd_{60}Co_{30}Al_{10}$ alloy exhibits an amorphous structure shown by the corresponding diffraction pattern. A small substitution of Co by 2.5 at.% Fe results In the formation of Fe-rich crystallites embedded in the Nd-rich amorphous matrix. The Fe-rich crystallites show hard magnetic behaviour at room temperature with a coercivity value of about 0.4 T, relatively low saturation magnetization and a Curie temperature of 500 K.

Characteristics of Fuel-rich Solid Propellants with Boron Powder and the Combustion Products (Boron Powder 적용 연료과농 추진제 및 연소 후 생성물의 특성 연구)

  • Kim, Miri;Kim, Jeongeun;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.12-19
    • /
    • 2022
  • The propellants used in the gas generator of the ducted rocket are fuel-rich propellants, which contain an excessive amount of metal fuel and a small amount of oxidizing agent compared to general solid rocket propellants. In this paper, boron powder and MgAl(Magnesium-Aluminium alloy) were applied to produce fuel-rich propellants. The optimum formulation was determined by characterizing these metal fuel-rich propellants. Analysis of combustion products in the gas generators confirmed that the fuel-rich propellants containing fine boron powder itself instead of boron-bead could be useful in gas generators.

Preparation and Sintering Characteristics of Y-doped $SrZrO_3$ by Citrate Gel Method

  • Jeon, Yang-Seuk;Sim, Soo-Man
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.217-223
    • /
    • 1999
  • Proten-conductive $SrZr_{0.95} Y_{0.05} O_{2.975}$ powder was prepared by citrate gel method its characteristics and sinterability were investigated. Amorphous gel could be obtained from a citric acid solution that $SrCO_3$ and metal nitrates were dissolved. The initial decomposition of the gel proceeded up to $250^{\circ}C$, followed by combustion of its decomposition products in the temperature range from $250^{\circ}C$ to $500^{\circ}C$. A well-crystallized perovskite phase with a stoichiometric composition after calcination at $1000^{\circ}C$. Sintering green compacts of this powder for 6 h showed a considerable densification to start at $1200^{\circ}C$ and resulted in 86.8% and 96.5% relative densities at $1400^{\circ}C$ and $1600^{\circ}C$, respectively. Whereas, the powder compacts prepared by solid state reaction had much lower relative densities, 73% at $1400^{\circ}C$ and 92% at $1600^{\circ}C$.

  • PDF

Surface Complexation of Cationic Metal Adsorption Onto Amorphous Aluminum Oxide (무정형 알루미늄 산화물에 의한 양이온 중금속의 표면착화)

  • Park, Youn-Jong;Yang, Jae-Kyu;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • The adsorption characteristics of cationic metals such as copper, cadmium, and lead onto the amorphous aluminum oxide, AMA-L, which was mineralized from raw sanding powder at $550^{\circ}C$ were investigated. Additionally, surface complexation reaction of cationic heavy metals onto AMA-L was simulated with MINEQL + software employing a diffuse layer model. From the batch adsorption tests in a single element system, the adsorption affinity of each metal ion onto AMA-L was following order: lead > copper > cadmium. In a binary system composed with copper and cadmium, quite a similar adsorption affinity was observed in each metal ion compared to the single element system. When the surface complexation constants obtained in the single system were used in the prediction of experimental adsorption results, model predictions were well fitted with experimental results of both single and binary systems.

Electrochemical Properties of Carbonized Phenol Resin (탄화된 페놀레진의 전기화학적 성질)

  • 김한주;박종은;홍지숙;류부형;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.629-632
    • /
    • 1999
  • For replacing Li metal ai Lithium ton Bakery(LIB) system. we used carbon powder material which prepared by pyrolysis of phenol resin as starting material. It became amorphous carbon by pyrolysis through it\`s self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. however it has a problem with structural destroy causing weak carbon-carbon bond. So. we used ZnCl$_2$ as the pore-forming agent. This inorganic salt used together with the resin serves not only as the pore-forming agent to form open pores, which grow Into a three-dimensional network structure in the cured material, foul also as the microstructure-controlling agent to form a loose structure dope with bulky dopants. We analyzed SEM in order to find to different of structure. and can calculate distance of interlayer. CV test showed oxidation and reduction

  • PDF

A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials (사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구)

  • Shin, Sung-Hyun;Jeong, Eui-Chul;Kim, Mi-Ae;Chae, Bo-Hye;Son, Jung-Eon;Kim, Sang-Yoon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.