• Title/Summary/Keyword: Amorphous Selenium

Search Result 74, Processing Time 0.022 seconds

The characteristic study of hybrid X-ray detector using ZnS:Ag phosphor (ZnS:Ag phosphor를 이용한 hybrid 형 X-ray detector 특성 연구)

  • Park, Ji-Koon;Gang, Sang-Sik;Lee, Dong-Gil;Cha, Byeong-Yeol;Nam, Sang-Hee;Choi, Heung-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.27-30
    • /
    • 2002
  • Photoconductor for direct detection flat-panel imager present a great materials challenge, since their requirements include high X -ray absorption, ionization and charge collection, low leakage current and large area deposition. Selenium is practical material. But it needs high thickness and high voltage in selenium for high ionization rate. We report comparative studies of detector sensitivity. One is an a-Se with $70{\mu}m$ thickness on glass. The other has hybrid layer of depositting ZnS phosphor with $100{\mu}m$ on a-Se. The leakage current of hybrid is similar to it of a-Se, but photocurrent is lager than a-Se. Both of them have high spatial resolution, but hybrid has higher sensitivity than a-Se at comparable bias voltage.

  • PDF

Charge Transport Characteristics of a-Se based X-ray Detector (비정질 셀레늄 기반의 X선 검출 센서의 전하 수송 특성)

  • Kang, Sang-Sik;Cha, Byung-Youl;Jang, Gi-Won;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.375-378
    • /
    • 2002
  • There has recently been a great deal of interest in amorphous selenium for application of digital x-ray image sensor. The initial number of the electron-hole induced by interaction a-Se with x-ray photons and the collection efficiency to surface of generated charges are important parameters for x-ray sensitivity of the a-Se. Therefore, in this paper, we analyzed that thickness of a-Se film and electric field is affected on the initial number of electron-hole and the collection efficiency. The experimental value of x-ray induced charge about the various thickness and the electric field is compared with estimated absorbed energy through MCNP 4C code to analyze the mechanism x-ray induced signal of a-Se. The experimental results showed that the electric field depends on initial escape coefficient and the thickness depends on collection coefficient than escape efficient.

  • PDF

Study on Electrical Properties of X-ray Sensor Based on CsI:Na-Selenium Film

  • Park Ji-Koon;Kang Sang-Sik;Lee Dong-Gil;Choi Jang-Yong;Kim Jae-Hyung;Nam Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.10-14
    • /
    • 2003
  • In this paper, we have introduced the x-ray detector built with a CsI:Na scintillation layer deposited on amorphous selenium. To determine the thickness of the CsI:Na layer, we have estimated the transmission spectra and the absorption of continuous x-rays in diagnostic range by using computer simulation (MCNP 4C). A x-ray detector with 65 ${\mu}m$-CsI:Na/30 ${\mu}m$-Se layer has been fabricated by a thermal evaporation technique. SEM and PL measurements have been performed. The dark current and x-ray sensitivity of the fabricated detector has been compared with that of the conventional a-Se detector with 100 ${\mu}m$ thickness. Experimental results show that both detectors exhibit a similar dark current, which was of a low value below $400 pA/cm^2$ at 10 V/${\mu}m$. However, the CsI:Na-Se detector indicates high x-ray sensitivity, roughly 1.3 times that of a conventional a-Se detector. Furthermore, a CsI:Na-Se detector with an aluminium reflective layer shows a 1.8 times higher x-ray sensitivity than an a-Se detector. The hybrid type detector proposed in this work exhibits a low dark current and high x-ray sensitivity, and, in particular, excellent linearity to the x-ray exposure dose.

On the Development of Digital Radiography Detectors: A Review

  • Kim, Ho-Kyung;Cunningham, Ian Alexander;Yin, Zhye;Cho, Gyu-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.86-100
    • /
    • 2008
  • This article reviews the development of flat-panel detectors for digital radiography based on amorphous materials, Important design parameters and developments are described for the two main components of flat-panel detectors: the X-ray converter and the readout pixel array. This article also introduces the advanced development concepts of new detectors. In addition, the cascaded linear systems method is reviewed because it is a very powerful tool for improving the design and assessment of X-ray imaging detector systems.

Image Quality Evaluation of Digital X-Ray Detector Using Amorphous Selenium Layer and Amorphous Silicon TFT Array (비정질 셀레늄층과 비정질 실리콘TFT배열을 사용하는 디지털 X-선 검출기의 영상특성 평가)

  • Kim, Chang-Won;Yoon, Jeong-Key;Kim, Jong-Hyo
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.219-226
    • /
    • 2008
  • In this study, we have conducted characterization of imaging performance for a flat panel digital X-ray detector using amorphous Selenium and a-Si TFT which was developed by the authors. The procedures for characterization were in concordance with internationally recommended standards such as IEC (international electrotechnical commission). The measures used for imaging performance characterization include response characteristic, modulation transfer function (MTF), detective quantum efficiency (DQE), noise power spectrum (NPS), and quantum limited performance. The measured DQEs at lowest and highest spatial frequencies were 40% and 25% respectively, which was superior to that of commercial products by overseas vendor. The MTF values were significantly superior to that of CR and indirect type DRs. The quantum limited performance showed the detector was limited by quantum noise at the entrance exposure level below 0.023 mR, which is sufficiently low for general X-ray examination.

  • PDF

Experiment of Drifting Mobilities of Holes and Electrons in Stabilized a-Se Film

  • Kang, Sang-Sik;Park, Ji-Koon;Park, Jang-Yong;Kim, Jae-Hyung;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.9-12
    • /
    • 2003
  • The electrical properties of stabilized amorphous selenium typical of the material used in direct conversion x-ray imaging devices are reported. Carrier mobility was measured using time-of-flight (TOF) measurements to investigate the transport properties of holes and electrons in stabilized a-Se film. A laser beam with pulse duration of 5 ns and wavelength of 350nm was illuminated on the surface of a-Se with thickness of 400 $\mu\textrm{m}$. The photo induced signals of a-Se film as a function of time were measured. The measured transit times of hole and electron were about 8.73${\mu}\textrm{s}$ and 229.17${\mu}\textrm{s}$, respectively. The hole and electron drift mobilities decreases with increase of electric field up to 4V/$\mu\textrm{m}$. Above 4V/$\mu\textrm{m}$, the measured drift mobilities exhibited no observable dependence with respect to electric field. The experimental results showed that the hole and electron drifting mobility were 0.04584 $\textrm{cm}^2$ V$\^$-1/s$\^$-1/ sand 0.00174 $\textrm{cm}^2$V$\^$-1/s$\^$-1/ at 10 V/$\mu\textrm{m}$.

System of a Selenium Based X-ray Detector for Radiography (일반촬영을 위한 셀레늄 기반의 엑스선 검출기 시스템)

  • Lee, D.G.;Park, J.K.;Choi, J.Y.;Ahn, S.H.;Nam, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.817-820
    • /
    • 2002
  • Amorphous selenium based flat panel detectors convert incident x-ray to electric signal directly. Flat panel detectors gain more interest real time medical x-ray imaging. TFT array and electric readout circuits are used in this paper offered by LG.Philips.LCD. Detector is based on a $1536{\times}1280$ array of a-Si TFT pixels. X-ray conversion layer(a-Se) is deposited upper TFT array with a $400{\mu}m$ by thermal deposition technology. Thickness uniformity of this layer is made of thickness control system technology$({\leq}5%)$. Each $139{\mu}m{\times}139{\mu}m$ pixel is made of thin film transistor technology, a storage capacitor and collecting electrode having geometrical fill factor of 86%. This system show dynamic performance. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system.

  • PDF

Characterization of the a-Se Film for Phosphor based X-ray light Modulator (형광체 기반 X선 광 변조기를 위한 비정질 셀레늄 필름 특성)

  • Kang, Sang-Sik;Park, Ji-Koon;Cho, Sung-Ho;Cha, Byung-Youl;Shin, Jung-Wook;Lee, Kun-Hwan;Mun, Chi-Woong;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.306-309
    • /
    • 2007
  • PXLM(Phosphor based x-ray light modulator) has a combined structure by phosphor, photoconductor, and liquid crystal and it can realize x-ray image of high resolution in clinical diagnosis area. In this study, we fabricated a photoconductor and investigated electrical and optical properties to confirm application possibility of radiator detector of PXLM structure. As photoconductor, amorphous selenium(a-Se), which is used most in DR(Digital radiography) of direct conversion method, was used and for formation of thin film, it was formed as $20{\mu}m-thick$ by using thermal vacuum evaporation system. For a produced a-Se film, through XRD(X-ray diffraction) and SEM(Scanning electron microscope), we investigated that amorphous structure was uniformly established and through optical measurement, for visible light of 40 $0\sim630nm$, it had absorption efficiency of 95 % and more. After fabricated a-Se film on the top of ITP substrate, hybrid structure was manufactured through forming $Gd_2O_3:Eu$ phosphor of $270{\mu}m-thick$ on the bottom of the substrate. As the result to confirm electrical property of the manufactured hybrid structure, in the case of appling $10V/{\mu}m$, leakage current of $2.5nA/cm^2$ and x-ray sensitivity of $7.31nC/cm^2/mR$ were investigated. Finally, we manufactured PXLM structure combined with hybrid structure and liquid crystal cell of TN(Twisted nematic) mode and then, investigated T-V(Transmission vs. voltage) curve of external light source for induced x-ray energy. PXLM structure showed a similar optical response with T-V curve that common TN mode liquid crystal cell showed according to electric field increase and in appling $50\sim100V$, it showed linear transmission efficiency of $12\sim18%$. This result suggested an application possibility of PXLM structure as radiation detector.

Transport parameters in a-Se:As films for digital X-ray conversion material using the moving-photocarrier-grating technique

  • Park, Chang-Hee;Kim, Jeong-Bae;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.305-306
    • /
    • 2005
  • The effects of As addition In amorphous selenium (a-Se) films for digital X-ray conversion material have been studied using the moving photocarrier grating (MPG) technique We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with X-ray sensitivity for a-Se:As X-ray device. The fabricated a-Se (0.3%As) based X-ray detector exhibited the highest X-ray sensitivity of 5 samples.

  • PDF

The transport property of direct conversion material a-Se:As film for digital radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.343-344
    • /
    • 2007
  • Carrier mobility was measured using time-of-flight (TOF) measurements to investigate the transport properties of holes and electrons in stabilized a-Se film. A laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of a-Se with thickness of $400\;{\mu}m$. The measured transit times of hole and electron were about $8.73\;{\mu}s\;and\;229.17\;{\mu}s$, respectively. The experimental results showed that the hole and electron drifting mobility were $0.04584\;cm^2V^{-1}S^{-1}\;and\;0.00174\;cm^2V^{-1}s^{-1}\;at\;10\;V/{\mu}m$.

  • PDF