• Title/Summary/Keyword: Amorphophallus konjac

Search Result 17, Processing Time 0.026 seconds

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang;Ying Qi;Jiani Liu;Penghua Gao;Feiyan Huang;Lei Yu;Hairu Chen
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.

Specificity of ${\beta}$-Mannanase from Trichoderma sp. for Amorphophallus konjac Glucomannan

  • Park, Gwi-Gun
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.820-823
    • /
    • 2006
  • Five oligosaccharides were isolated from the hydrolysate of konjac (Amorphophallus konjac) glucomannan by a purified ${\beta}$-mannanase from Trichoderma sp. These oligosaccharides were identified as M-M, G-M, M-G-M, M-G-M-M, and M-G-G-M; where G- and M- represent ${\beta}$-1,4-D-glucopyranosidic and ${\beta}$-1,4-D-mannopyranosidic linkages, respectively. The mode of action of the mannanase on the glucomannan is discussed on the basis of the structure of the above oligosaccharides.

Rheological Properties of Konjac Glucomannan Dispersons (구약감자 Glucomannan 현탁액의 유동특성)

  • Ji, Soo-Kyung;Kim, Nam-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.246-250
    • /
    • 1995
  • Konjac(Amorphophallus konjac) glucomannan dispersions were prepared from konjac flour, pretreated konjac flour and purified glucomannan. Konjac glucomannan dispersions showed non-Newtonian fluid behavior without yield stress and higher shear stress at fixed shear rate than the dispersions of gum xanthan, gum carrageenan and sodium alginate. While temperature increased, shear stress at fixed shear rate of konjac glucomannan dispersion steadily decreased. The apparent viscosity of konjac glucomannan dispersion was in its maximum at pH 7, whereas decreased on the outskirts of pH 7. The change in apparent viscosity was not found up to 1% sodium chloride addition in case of konjac glucomannan dispersion. However, the apparent viscosity of konjac glucomannan dispersion decreased up to sugar addition of 10%, afterwards increased.

  • PDF

Physicochemical Properties of Konjac Glucomannan (구약감자 Glucomannan의 이화학적 특성)

  • Kim, Nam-Soo;Ji, Soo-Kyung;Mok, Chul-Kyoon;Kim, Seung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.799-804
    • /
    • 1994
  • A 0.625% dispersion of the pretreated konjac (Amorphophallus konjac) flour was treated with 3 volumes of ethanol and the precipitate was dried at room temperature to produce purified glucomannan in 67.2% yield. Konjac glucomannan was analyzed for proximate composition and the contents of total dietary fiber and minerals. TLC analysis with a mobile phase of isopropanol : $H_2O$(4 : 1, v/v) revealed the presence of mannose and glucose as component sugars. The molecular mass of konjac glucomannan was in the range between 240 and 370 kDa as determined by HPLC with a Protein Pak 300SW column. Water holding capacity of konjac glucomannan was greater than those of most other gums except guar and xanthan gums. Konjac glucomannan accelerated foam formation of bovine serum albumin. As the concentration of konjac glucomannan increased up to 2%, maximum viscosity increased drastically, whereas the swelling time at maximum viscosity decreased. When swelling temperature increased, maximum viscosity and the swelling time at maximum viscosity decreased simultaneously.

  • PDF

Cooking Characteristics of Noodle containing Konjac Powder and Capsosiphon fulvescens (매생이 농도를 달리한 곤약국수의 조리 특성)

  • Choi, Hee-Eun;Park, Hwa-Young;Kim, Na-Yul;Jang, Hyeock-Soon;Lee, Nan-Hee;Choi, Ung-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.847-851
    • /
    • 2017
  • This purpose of this study was to investigate cooking characteristics of noodles prepared by adding 0, 2, 4 or 6 percent of Capsosiphon fulvescens to wheat flour containing konjac powder. Water binding capacity was significantly increased with increasing amounts of Capsosiphon fulvescens. Weight and volume of cooked noodles increased significantly in proportion with the amount of Capsosiphon fulvescens. Turbidity of the soup after cooking also increased with the addition of Capsosiphon fulvescens. Brightness(L) and redness(a) were decreased with addition of Capsosiphon fulvescens. Yellowness(b) increased. The color value of cooked noodles was decreased compared with that of wet noodles. Sensory evaluation scores revealed that cooked noodles with 4 percent addition group were highest in terms of color, flavor and overall acceptability. This study validates that addition of Amorphophallus konjac and 4 percent Capsosiphon fulvescens may improve functionality and preference of noodles.

Comparison of Chemical Components among varieties of Elephant-food (Amorphophallus konjac, K.) (수집종긴의 구약감자 성분비교)

  • HeDuckLee
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.218-223
    • /
    • 1996
  • This study was carried out to obtain a basic information for the improvement of human health and the development of variety through the analysis of inorganic compounds. contents of amino acids and polysaccarides on three elephant foods, Amorphophallus konjac, collected from Kumsan, Japan and China. The contents of mannan as a carbohydrate of a major component in an elephant food was slightly high in Kumsan than that of Japan and China variety. Degree of VIscosity of an elephant food depends upon the contents of soluble free sugars and amino acids contents of these free sugars were high in the order of Japan, China and Kumsan variety. The analytical results on inorganic compounds in an elephant food were shown as follows; The contents of potasium, phosphate and ferrin of Kumsan variety were shown to be higher than those of China and Japan, while sodium and caleium were appeared to be highter in China chip

  • PDF

Physical Properties of the Films Prepared with Glucomannan Extracted from Amorphophallus konjac (곤약감자 분말에서 추출한 글루코만난을 원료로 제조된 필름의 물리적 성질)

  • Yoo, Min-Hee;Lee, Hyo-Gu;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.255-260
    • /
    • 1997
  • Glucomannan was isolated from konjac (Amorphophallus konjac) flour by precipitating in aqueous alcohol solution. Konjac glucomannan films were prepared at various concentrations up to 1.0% (w/v) in aqueous glycerol solutions. Tensile strength (TS), percent elongation (E), water vapor permeability (WVP) as the barrier property and the solubility of the films were varied with glucomannan concentrations, glycerol contents and storage humidities. TS was decreased as the glucomannan concentration in the film and relative humidity for storage increased, and E was vice versa. WVP showed better barrier properties compared with other polysaccharides films. Glycerol contents in the film significantly affccted TS and E, but did not affect WVP. The glucomannan films were completely dissolved in the water by 150 min stirring at room temperature.

  • PDF

Effects of Seed Tuber Processing and Cultural methods on Tuber yield of Amorphophallus Konjac. K. (구약감자의 종서처리 및 재배방법이 수량에 미치는 영향)

  • 이희덕
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.117-122
    • /
    • 1992
  • This experiment was conducted to determine tuber yield increase of Konjac by sowing time, seed tuber split method and cultural methods. Tuber yield per unit area was generally increased in early planting than conventional planting time. Tuber yield of polyethylene film mulching culture among storage methods was high, while the emergence rate of konjac for seedling plus PE mulching, and tunnel culture were prompted by 20 days, and especially seedling was to be greatly controlled due to temperature difference of the day and night at emergence. All of the cutting methods(two and four split method) were higher than conventional method because of increasing number of bulblet, accordingly, that method using seed tuber was profitable for mass propagation. Both botanical characteristics and tuber yield tend to be increased at 30 to 50 percent shading than natural condition.

  • PDF

Enhancement of Konjac Storage by Controlling pH of Coagulant and Soaking Liquid (응고제와 침지제의 pH 조절에 따른 곤약의 저장성 강화)

  • Choi, Ung-Kyu
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.100-105
    • /
    • 2019
  • In this study, viable cells, coliforms and food poisoning bacteria were identified according to the pH levels of the coagulant and immersion liquid during each stage in the production of konjac, and storage stability was confirmed for 3 months. A considerable number of bacteria were found in the raw material, or powdered konjac (Amorphophallus konjac), as well as in the processing water. However, it has been shown that the plastic package were safe from microorganisms. Due to the high pH of the added coagulant [2.0% $Ca(OH)_2$], no contaminating bacteria were observed after konjac jelly formation. Coliforms were not detected any of the tested steps. During the molding process, the pH of konjac was adjusted to 9.5 ~ 12.5 at intervals of 0.5, and the number of bacteria was determined. As a result, no bacteria were detected in the alkaline range above pH 11.5. The pH of the immersion liquid was adjusted to 10.0 ~ 12.5, and after hardening, the konjac were stored at room temperature for 12 weeks. As a result, no bacteria, Escherichia coli or other food poisoning bacteria were detected at pH 11.5 or higher. Based on these results, it is expected that when the pH levels of the konjac and its immersion liquid are maintained at 11.5, it should be possible to keep the product for 3 months without additional sterilization process.