• Title/Summary/Keyword: Ammunition Shelf-life

Search Result 15, Processing Time 0.027 seconds

A study on the factors affecting shelf-life for 60, 81mm mortar ammunition (60, 81mm 박격포탄의 저장수명 요인 연구)

  • Jang, SooHee;Chun, Heuiju;Cho, Inho;Yoon, KeunSig;Kang, MinJung;Park, DongSoo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.611-620
    • /
    • 2018
  • Limitations on human and material resources make it is difficult to conduct Ammunition Stockpile Reliability Program (ASRP) tasks for the entire ammunition. Stockpile ammunition life prediction studies can contribute to efficient ASRP tasks. This study assess the shelf-life of ammunition, using survival analysis based on ASRP results for 60mm and 81mm mortar ammunition from 2003 to 2016. Traditional assessments often use solely storage duration as the only main independent variable; however, this assessment used other factors such as ammunition magazine shape and weather factors with the stockpile shelf-life as independent variables to conduct a Cox's proportional hazard model analysis. This was then followed by an assessment of ammunition magazine type, maximum temperature and rainfall factors influence on the shelf-life of 60mm and 81mm mortar ammunition. As a result, the type of ammunition magazine, maximum temperature and the rainfall influence the shelf-life of 60mm and 81mm mortar ammunition.

A Review on Ammunition Shelf-life Prediction Research for Preventing Accidents Caused by Defective Ammunition (불량탄 안전사고 예방을 위한 탄약 수명 예측 연구 리뷰)

  • Young-Jin Jung;Ji-Soo Hong;Sol-Ip Kim;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2024
  • In order to prevent accidents via defective ammunition, this paper analyzes recent research on ammunition life prediction methodology. This workanalyzes current shelf-life prediction approaches by comparing the pros and cons of physical modeling, accelerated testing, and statistical analysis-based prediction techniques. Physical modeling-based prediction demonstrates its usefulness in understanding the physical properties and interactions of ammunition. Accelerated testing-based prediction is useful in quickly verifying the reliability and safety of ammunition. Additionally, statistical analysis-based prediction is emphasized for its ability to make decisions based on data. This paper aims to contribute to the early detection of defective ammunition by analyzing ammunition life prediction methodology hereby reducing defective ammunition accidents. In order to prepare not only Korean domestic war situation but also the international affairs from Eastern Europe and Mid East countries, it is very important to enhance the stability of organizations using ammunition and reduce costs of potential accidents.

Prediction of Shelf-life for 81mm Mortar High Explosive Ammunition Using Multiple Regression Model (다중 회귀 모델을 활용한 81mm 박격포 고폭탄 저장수명 예측)

  • Young-Jin Jung;Ji-Soo Hong;Kang-Young Lee;Sung-Woo Kang
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study aims to develop a regression model using data from the Ammunition Stockpile Reliability Program (ASRP) to predict the shelf life of 81mm mortar high-explosive shells. Ammunition is a single-use item that is discarded after use, and its quality is managed through sampling inspections. In particular, shelf life is closely related to the performance of the propellant. This research seeks to predict the shelf life of ammunition using a regression model. The experiment was conducted using 107 ASRP data points. The dependent variable was 'Storage Period', while the independent variables were 'Mean Ammunition Velocity,' 'Standard Deviation of Mean Ammunition Velocity,' and 'Stabilizer'. The explanatory power of the regression model was an R-squared value of 0.662. The results indicated that it takes approximately 55 years for the storage grade to change from A to C and about 62 years to change from C to D. The proposed model enhances the reliability of ammunition management, prevents unnecessary disposal, and contributes to the efficient use of defense resources. However, the model's explanatory power is somewhat limited due to the small dataset. Future research is expected to improve the model with additional data collection. Expanding the research to other types of ammunition may further aid in improving the military's ammunition management system.

Prediction of the shelf-life of ammunition by time series analysis (시계열분석을 적용한 저장탄약수명 예측 기법 연구 - 추진장약의 안정제함량 변화를 중심으로 -)

  • Lee, Jung-Woo;Kim, Hee-Bo;Kim, Young-In;Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • To predict the shelf-life of ammunition stockpiled in intermediate have practical meaning as a core value of combat support. This research is to Predict the shelf-life of ammunition by applying time series analysis based on report from ASRP of the 155mm, KD541 performed for 6 years. This study applied time series analysis using 'Mini-tab program' to measure the amount of stabilizer as time passes by is different from the other one that uses regression analysis. The average shelf-life of KD541 drawn by time series analysis was 43 years and the lowest shelf-life assessed on the 95% confidence level was 35 years.

A Study on the Estimation of Shelf Life for Fuze MTSQ KM577A1 from ASRP Data (저장탄약신뢰성평가 데이터를 이용한 기계식시한신관 KM577A1 저장수명 추정 연구)

  • Lee, Dongnyok;Yoon, Keunsig
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Purpose: The purpose of this study is to estimate shelf life of fuze MTSQ (Mechanical Time & Super Quick) KM577A1 from Ammunition Stockpile Reliability Program (ASRP) data. Methods: For many years, ammunition test data had been gathered from ASRP. In this study, lot selection criteria and reliability score of functioning time for fuze are proposed. Reliability score of functioning time and failure data are used to estimate shelf life. Results: The results of this study are as follows; The failure modes of fuze MTSQ KM577A1 are dud, inverse function and mechanical time functioning failure (not operating in intended time). Dud and inverse function are major failure modes. Fuze MTSQ KM577A1's shelf life ($B_5$) is estimated 18.2 years conservatively. Conclusion: Degradation of chemical components in fuze MTSQ KM577A1 is major factor for its reliability. And shelf life ($B_5$) of fuze MTSQ KM577A1 is estimated 18.2 years conservatively.

A Study on Reliability and Shelf-Life of DELAY M9 (DELAY M9 탄약의 신뢰도 및 저장수명 연구)

  • Lee, Jeong-Ho;Choi, Jae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.64-72
    • /
    • 2020
  • DELAY M9 is an ammunition used in combination with the fuse M904 and M905 of aviation drop-off ammunitions. Due to the properties of the ammunition, the performance or safety of the ammunition cannot be verified until it is used, because of its one-time function, no reproduction and is finally destroyed at the same time. Long-term storage of ammunition in use by the army is inevitable due to its operational characteristics, and a test evaluation is required to maintain and verify the performance of stored ammunition for immediate use in case of emergency. This paper estimates the reliability and shelf life of the DELAY M9 ammunition by using the test data obtained through ASRP performed from the past to the present. The result of the performance evaluation test for the currently stored DELAY M9 ammunition is analyzed, and the reliability and shelf-life of the stored ammunition are assessed by examining the number of defects according to the storage time and production year. This research result can be used to manage the stored ammunition, such as ASRP planning and evaluation test, result analysis and munition state decision.

The Study on the Shelf Life of the Combustible Cartridge Case by the Stabilizer(DPA, ECL) and Migration of Nitroglycerin (니트로글리세린의 이동과 안정제(DPA, ECL)에 의한 소진탄피 저장수명 연구)

  • Lim, Hoyoung;Jang, Ilho;Seo, Jihyun;Jung, Yonggeun;Jo, Minsoo;Han, Changho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.509-516
    • /
    • 2019
  • It is well known that nitroglycerin(NG) may evaporate and migrate from the triple base propellant grains in storage. This physical process makes it double base environment to the CCC(combustible cartridge case) which is based on nitrocellulose(NC) without NG. Meanwhile, it is not appropriate to use diphenylamine(DPA) as a stabilizer for CCC in this double base environment because of incompatibility between DPA and NG. So we estimated the shelf life to study the effect of NG migration from propellant to CCC by following the procedures in the STANAG 4257. And we found out that CCC with ethylcentralite(ECL) has 7.5 years longer shelf life than with DPA, when NG migrates to CCC from triple base propellant grains.

Research on the Decrease of Dud Ammunition Rate of 40mm Grenade(K200) Fuze through Quality Improvement (40mm 저속유탄(K200) 신관 품질개선을 통한 불발율 감소에 관한 연구)

  • Ju, Jin-Chun;Kim, Yong-Hwa;Ahn, Nam-Su;Kim, Sang-Min;Ha, Su-Ra
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.700-707
    • /
    • 2016
  • Recently, ammunition malfunctions of the 40mm grenade were reported during live fire training. When 72 40mm grenades were fired by the army, 11 duds were encountered. The dud ammunition rate was approximately 15%. Because ammunition is used a long time after its manufacture, it is necessary to ensure its performance after long-term storage. In this study, we attempted to decrease the dud ammunition rate of 40mm grenade (K200) fuzes through quality improvement. First, it was determined by the detonator performance test that abnormal explosions occurred due to the degradation of the detonator as a result of its aging characteristics. Second, we improved the fuze quality of the 40mm grenade. Third, we tested its shelf life to estimate its life expectancy. The shelf life of the 40mm grenade fuze obtained using the Arrhenius equation was 6.5 years for the existing grenade fuze and 45.5 years for the improved grenade fuze. This showed that the shelf life of the improved grenade was increased approximately 7 times. Therefore, the improved 40mm grenade fuze contributes to the quality improvement of the 40mm grenade by decreasing the dud ammunition rate during long term storage.

A study on the effective management of artillery ammunition using ASRP data -The case of test interval determination, shelf-life prediction, force effectiveness analysis- (저장탄약신뢰성평가 데이터를 활용한 포병탄약의 효과적 관리방안 연구 -시험주기 설정, 저장수명 예측, 전력효과 분석을 중심으로-)

  • Lee, Jung-Woo;Hong, Yoon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4349-4358
    • /
    • 2012
  • ASRP(Ammunition Stockpile Reliability Program) Data is stored and operated in the field of evaluating the ammunition is not only the only field data but also the ammunition performance-oriented data can determine objectively the power of the artillery. However, ASRP has been used as a yardstick to judge the status of ammunitions stockpiled in the field. On the other hand re-evaluation of the accumulated data and in-depth research have not been carried out. A Study on the Effective Management of Artillery Ammunition using ASRP data suggests how to utilize the ASRP data to analyze and manage existing artillery forces whose focus is centered on increasing the performance of artillery ammunitions through setting the test intervals of deployed stockpiled ammunitions, forecasting the shelf-life of ammunitions, and analyzing the effectiveness of the military strength through modelling and simulation.

A Study on the Shelf-Life Prediction of the Domestic Single Base Propellants Ammunition : Based on 105mm High Explosive Propellants (국내 단기추진제 탄약의 저장수명 예측에 관한 연구 : 105미리 고폭탄 추진체를 중심으로)

  • Choi, Myoungjin;Park, Hyungju;Yang, Jaekyung;Baek, Janghyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.36-42
    • /
    • 2014
  • Domestic 105mm HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product ($NO_2$, $NO_3$, and $HNO_3$) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants.