• Title/Summary/Keyword: Ammonia solution

Search Result 365, Processing Time 0.024 seconds

Effects of Prebiotics and Probiotics on Swine Intestinal Microflora and Fermentation Products In Vitro Fermentation (In vitro 발효에서 Prebiotics와 Probiotics가 돼지 장내미생물과 발효산물에 미치는 영향)

  • Kim, Dong-Woon;Chae, Su-Jin;Kim, Young-Hwa;Jung, Hyun-Jung;Lee, Sung-Dae;Park, Jun-Cheol;Cho, Kyu-Ho;Sa, Soo-Jin;Kim, In-Cheul;Kim, In-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In the present study, the effects of prebiotics and prebiotics+probiotics on intestinal microflora and fermentation products were evaluated in a pig in vitro fermentation model. The substrates used in this study were iso-malto oligosaccharide (IMO), partially digested chicory-inulin (CI), raffinose (RA), and cyclodextrin (CD) as prebiotics and Lactobacillus reiteri as probiotics. For a pig in vitro fermentation, the experimental diet for growing pigs was predigested using digestive enzymes secreted by small intestine and this hydrolyzed diet was mixed with a buffer solution containing 5% fresh swine feces. The mixture was then incubated with either prebiotics or prebiotics+probiotics for 24 h. Samples were taken at 24 h, and viable counts of microflora, gas, pH, volatile organic compounds (VOCs) and short-chain fatty acid (SCFA) were analyzed. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments containing prebiotics and prebiotics+probiotics when compared to the control. However, the number of lactic acid bacteria increased in the prebiotics and prebiotics+probiotics treatment. The pH values in the fermentation fluid decreased in all treatments when compared to the control, and their effects were greater in the prebiotics+probiotics group than prebiotics group. Fermentation with prebiotics resulted in a reduction in malodorous compounds such as ammonia, hydrogen sulfide and skatole when compared to the prebiotics+probiotics group. Short-chain fatty acid production was also higher for treatment with prebiotics+probiotics than treatment with prebiotics. In conclusion, the results of this study demonstrated that fermentation with prebiotics was effective in reducing the formation of malodorous compounds and prebiotics+probiotics was effective in increasing lactic acid bacteria and SCFA and reducing the pH. Moreover, further studies will be needed to determine whether the results observed in the in vitro model would occur in pigs that ingest these prebiotics or probiotics.

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.

Development of a Method for Analyzing the Nicotine Content in Synthetic Flavoring Substances as Unauthorized E-cigarette Liquid by Using HPLC (전자담배 액상 충진제와 유사한 합성착향료 중 니코틴의 HPLC 분석법 개발)

  • Kim, Jae-Young;Lee, Sang-Mok;Chang, Moon-Ik;Cho, Yoon-Jae;Lee, Han-Jin;Chae, Young-Sik;Rhee, Gyu-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.693-699
    • /
    • 2013
  • A simple, sensitive, and specific method for quantifying the nicotine content of synthetic favoring substances (SFS) was developed using high performance liquid chromatography (HPLC) with a photo-diode array detector (PDA). Nicotine was extracted from SFS samples by using an acid-base liquid-liquid extraction method with dichloromethane and distilled water. The nicotine content was quantified by HPLC/PDA (261.9 nm) with a $C_{18}$ column under a gradient of 10% acetonitrile with 20 mM ammonium formate (ammonia solution adjusted to pH 8.7) to 100% acetonitrile. The calibration curve, analyzed from concentration standards between 0.1 to 2 mg/L, presented linearity with a correlation coefficient ($r^2$)>0.9999. The limit of quantitation (LOQ) of nicotine in SFS was 0.4 mg/kg, and the average recoveries ranged from 76.4% to 96.3%. The repeatability of measurements, expressed as the coefficient of variation (CV%), ranged from 1.74 to 5.12%. This newly developed method for nicotine quantification in SFS can be considered an analytical method with an acceptable level of sensitivity and repeatability.

A Study on The Content of Liver Protein, Nucleic Acids, and Guanine Deaminase Activity of Mouse During Acute Starvation (급성(急性) 기아(饑餓)마우스의 간단백질(肝蛋白質), 핵산(核酸) 및 Guanine Deaminase 활성(活性)에 관(關)한 연구(硏究))

  • Park, Seung-Hee;Kim, Seung-Won
    • Journal of Nutrition and Health
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1968
  • Number of aspects, not only nutritional but social as well as political involved in human starvation pose nowadays global problems. In order to help establish the minimum nutritional requirements in the daily life of a man and to free people as well from either undernourishment, malnutrition or even starvation many workers have devoted themselves so far on the research programs to know what and how number of metabolic events take place in animals in vivo. It is the purpose of the present paper to examine in effect to what extent both of the protein and nucleic acids (DNA & RNA) together with an enzyme, guanine deaminase, which converts guanine into xanthine and in turn ends up to uric acid as an end product, undergo changes, quantitatively during acute starvation, using the mouse as an experimental animal. The mouse was strictly inhibited from taking foods except drinking water ad libitum and was sacriflced 24, 48, and 72 hours following starvation thus acutely induced. The animals consisted of two experimental groups, one control and another starvation groups, each being consisted of 6-24 mice of whose body weights ranged in the vicinity of 10 g. The animals were sacriflced by a blow on the head, followed by immediate excision of their livers into ice-cold distilled water, washing adherent blood and other contaminant tissues. The liver was minced foramin, by an all-glass homogenizer immersing it in an ice-bath, followed by subsequent fractionatin of the homogenate (10% W/V in 0.25M sucrose solution made up with 0.05M phosphate buffer of pH 7.4). For the liver protein and guanine deaminase assay, the 10% homogenate was centrifuged at 600 x g for 10 minutes to eliminate the nuclear fraction; and for the estimation of DNA and RNA, the homogenate was prepared by the addition of 10% trichloroacetic acid in order to free the homogenate from the acid-soluble fraction, the remaining residue being delipidate by the addition of alcohol and dried in vacuo for later KOH (IN) hydrolysis. The changes in body and liver wegihts during acute starvation were checked gravimetrically. Protein contents in the liver were monitored by the method of Lowry et al; and guanine deaminase activities were followed by the assay of liberated ammonia from the substrate utilizing the Caraway's colorimetry. The extraction of both DNA and RNA was performed by the Schmidt-Thannhauser's method, which was followed by Marmur's method of purification for DNA and by Chargaff's method of purification for RNA. The determinations of both DNA and RNA were carried out by the diphenylamine reaction for the former and by the orcinol reaction for the latter. The following resume was the results of the present work. 1. It was observed that the body as well as liver weights fall abruptly during starvation, and that the loss of body weight showed no statistical correlation with the decreases in the content of liver protein. 2. The content of liver protein and activity of liver guanine deaminase activity as well decline dramatically, and the specific activities of the enzyme (activity/protein), however, decreased gradually as starvation proceeded. 3. Both of the nucleic acids, DNA and RNA, showed decrements in the liver of mouse during acute starvation; the latter, however, being more striking in the decline as compared to the former. 4. The decreases in the liver protein content as resulted from the acute starvation had no statistically significant correlation with the decrements of DNA in the same tissue, but had regressed with a significant statistical correlation with the fall of RNA in the tissue. 5. The decrease in the activity of guanine deaminase in the liver of mouse during acute starvation was functionally more proportional to the decrease in RNA than DNA, and moreover correlated with the changes in the content of the liver protein. 6. The possible mechanisms involved during in this acute starvation as bring the decreases in the contents of DNA, protein, and guanine deaminase were discussed briefly.

  • PDF

Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production (조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과)

  • Jin, Guang Lin;Shinekhuu, Judder;Qin, Wei-Ze;Kim, Jong-Kyu;Ju, Jong-Kwan;Suh, Seong-Won;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.59-74
    • /
    • 2012
  • Buffer solubility and protein fractionation were evaluated from the hays (timothy, alfalfa and klein) and straws (tall fescue and rice), and $In$ $vitro$ trial was conducted to examine the effect of buffer extraction on fermentation characteristics, degradability and gas ($CO_2$ and $CH_4$) production. Buffer soluble protein (SP) content and A fraction in total protein were highest in alfalfa hay as 61% and 41.77%, respectively while lowest in rice straw (42.8% and 19.78%, respectively). No difference was observed in B1 fraction among forages but B2 fraction was slightly increased in klein hay (12.34%) and tall fescue straw (10.05%) compared with other forages (6.34~8.85%). B3 fraction of tall fescue was highest as 38.49% without difference among other forages while C fraction was highest in rice straw. pH in incubation solution was higher in all forages after extraction than before extraction at 3h (P<0.01) and 6h (P<0.05), and pH from hays of timothy and alfalfa was higher than the other forages at 6h (P<0.05) and 12h (P<0.001). Regardless of extraction, ammonia-N concentration from alfalfa hay was increased at all incubation times and extraction effect was appeared only at 3h incubation time (P<0.01). Total VFA concentration from alfalfa hay was highest up to 24h incubation while those from tall fescue straw and rice straw were lowest. Buffer extraction decreased (P<0.01~P<0.001) the total VFA concentration. Acetic acid proportion was increased (P<0.001) before extraction of forages but no difference was found between forages. Propionic acid($C_3$) proportion was also increased(P<0.001) before extraction in all forages than in straws at 3h, 24h and 48h incubations, and $C_3$ from hays were mostly higher (P<0.05) than from straws. Butyric acid proportion, however, was not affected by extraction at most incubation times. Parameter 'a' regarding to the dry matter (DM) degradation was increase (P<0.001) in all forages before extraction, and was decreased (P<0.05) in tall fescue straw and rice straw compared with hays. Parameter 'b' was also increased (P<0.001) before extraction but no difference was found between forages. Effective degradability of DM (EDDM) was higher (P<0.001) before extraction in most forages except for rice straw. Buffer extraction decreased (P<0.05) all parameters (a, b, and c) regrading to the crude protein (CP) degradation but no difference was found between forages. Effective degradation of CP (EDCP) was lower (P<0.05) in straws than in hays. Parameters 'a' and 'b' regarding to the NDF degradation (P<0.01) and effective degradability of NDF (EDNDF, P<0.001) were also higher in forages before extraction than after extraction but no difference was found between forages. Buffer extraction reduced (P<0.05~P<0.001) $CO_2$ production from all the forages uo to 24h incubation and its production was greater (P<0.05~P<0.01) from hays than straws. Methane ($CH_4$) production was also greater (P<0.01~P<0.001) in all forages at all incubation times, and its production was greater (P<0.05) from hays than from straws at most incubation times. Based on the results of the current study, it can be concluded that buffer solubility and CP fractionation might be closely related with $In$ $vitro$ VFA concentration, degradability and gas ($CO_2$ and $CH_4$) production. Thus, measurement of buffer solubility and protein fractionation of forages might be useful to improve TMR availability in the ruminants.