• Title/Summary/Keyword: Ammonia solution

Search Result 366, Processing Time 0.027 seconds

Effect of Doping State on Photoresponse Properties of Polypyrrole

  • Choi, Jongwan
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.250-253
    • /
    • 2021
  • Polypyrrole is an organic thermoelectric material which has been receiving extensive attention in recent years. Polypyrrole is applicable in various fields because its electrical properties are controllable by its doping concentration. In this study, the effects of the polypyrrole doping state on its photoresponse were investigated. The degree of doping was controlled by ammonia solution treatment. Then, the chemical structure as a function of the doping states was observed by Raman analysis. Moreover, the photocurrent and photovoltage characteristics for various doping states were measured by an asymmetrically irradiated light source. As the degree of doping increased, the electrical conductivity increased, which affected the photocurrent. Meanwhile, the photovoltage was related to the temperature gradient caused by light irradiation.

The Potentiometric Titration Curves on Ammonia Absorption of Carboxylic Ion Exchanger (카르복실 이온교환수지의 암모니아 흡착에 대한 전위차 적정곡선)

  • Kim, T.I.;Son, W.K.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.969-973
    • /
    • 1999
  • In this work, we studied the degree of hydrolysis of ion exchanger in $NH_4OH$ solution and sorption characteristics of $NH_3$ by potentiometric titration curves with using carboxylic acid ion exchanger Fiban K-4. We knew that the theoretical pH values agreed with the experimental pH values on the $NH_4OH$ concentrations in various concentrations of supporting electrolyte $(NH_4)_2SO_4$. The sorption values of $NH_3$ using the ion exchanger can be calculated from equivalent sorption curves for various pH. Also, the degree of hydrolysis increased with decreasing concentration of supporting electrolyte and pH. In order to obtain the mono ion form below 0.01 M as the decreasing concentration of supporting electrolyte, the pH values should be increased. From these results, therefore, the concentrations of supporting electrolyte and pH values were determined.

  • PDF

Synthesis of Iron Oxide Using Ferrous and Ferric Sulfate (황산제일철과 황산제이철을 이용한 산화철 합성)

  • Eom, Tae-Hyoung;Tuan, Huynh Thanh;Kim, Sam-Joong;Suh, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.301-306
    • /
    • 2010
  • The chemical formula of magnetite ($Fe_3O_4$) is $FeO{\cdot}Fe_2O_3$, t magnetite being composed of divalent ferrous ion and trivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide was investigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of iron oxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 and the reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite was formed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle size of the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and median particle size of the magnetite increased when the reaction temperature was increased from $25^{\circ}C$ to $75^{\circ}C$. When ferric and ferrous sulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfate was used alone because of the co-existence of $Fe^{2+}$ and $Fe^{3+}$ in the solution.

THE INFLUENCE OF SELECTED CHEMICAL TREATMENTS ON THE RUMINAL DEGRADATION AND SUBSEQUENT INTESTINAL DIGESTION OF CEREAL STRAW

  • Wanapat, M.;Varvikko, T.;Vanhatalo, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.75-83
    • /
    • 1990
  • An experiment was conducted with three ruminally and intestinally cannulated non-lactating cows of Finnish Ayrshire breed, to assess the ruminal degradation characteristics of oat (Avena sativa), rye (Secale cereale) and rice (Oryza sativa) straw by the nylon bag technique, and the subsequent post-ruminal degradation of their rumen-undegraded residues by using the mobile bag technique, respectively. The straw samples were untreated or treated with aqueous $NH_3$ or with urea solution in cold or hot water. The untreated straw samples were milled or chopped, and the treated straw samples were chopped. The constant values a, b, and c were computed according to the exponential equation, where a = intercept of degradation curve at time 0, b = potentially degradable material, c = rate of degradation of band (a+b) = maximum potential degradability (asymptote). It was found that nitrogen contents of chemically treated straw were markedly increased by both $NH_3$ and urea treatments. Milling the samples attributed to a remarkable loss at 0 h incubation time as compared to chopping of the respective samples. However, chemical treatment markedly improved the b value and the subsequent (a+b) values for dry matter, organic matter, neutral-detergent fiber, and acid-detergent fiber of the samples. Furthermore, temperature of the water used in the urea solutions was considered essential, since urea in hot water rather than in cold water seemed to enhance the overall degradability. The disappearance of rumen-incubated straw residues from the mobile bags ranged from 4.5 to 9.6% for the parameters measured. On average, the OM disappearance from bags was clearly higher for the residues of urea treated straw compared to those of ammonia treated straw, but the disappearance of NDF tended, however, to be higher on the ammonia treatment.

Synthesis of Size Controlled Spherical Silica Nanoparticles via Sol-Gel Process within Hydrophilic Solvent

  • Kim, Tae Gyun;An, Gye Seok;Han, Jin Soon;Hur, Jae Uk;Park, Bong Geun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • In this study, based on hydrolysis and condensation via $St{\ddot{o}}ber$ process of sol-gel method, synthesis of mono-dispersed silica nanoparticles was carried out with hydrophilic solvent. This operation was expected to be a more simplified process than that with organic solvent. Based on the sol-gel method, which involves simply controlling the particle size, the particle size of the synthesized silica specimens were ranged from 30 to 300 nm by controlling the composition of tetraethylorthosilicate (TEOS), DI water and ammonia solution, and by varying the stirring speeds while maintaining a fixed amount of ethanol. Increasing the content of DI water and decreasing the content of ammonia caused the particle size to decrease, while controlling the stirring speed at a high level of RPMs enabled a decrease of the particle size. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were utilized to investigate the success factors for synthesizing process; Field emission scanning electron microscopy (FE-SEM) was used to study the effects of the size and morphology of the synthesized particles. To analyze the dispersion properties, zeta potential and particle size distribution (PSD) analyses were utilized.

Analytical Study on Re-solidification Materials(Ammonium Carbonate Intermediates) for NOx Reduction of Exhaust Emissions in Diesel Engine with Solid SCR (디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR용 Ammonium Carbonate 중간생성물인 재응고 물질의 분석 연구)

  • Shin, Jong Kook;Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.152-159
    • /
    • 2014
  • Urea solution as a reductant of SCR has been widely used to reduce NOx emissions from diesel engine. But it has lots of problems which are freezing at low temperature due to liquid state, deposition of solid formation in the exhaust, dosing device, and complex package such as mixers for uniform concentration of ammonia. In order to overcome these obstacle, ammonium carbonate which is one of solid ammonium materials to produce ammonia gas directly by sublimation process is considered. Simple reactor with visible widow was designed to predict equilibrium temperature and pressure of ammonium carbonate. To simulate real operation conditions under automobile environment, several cycles of heating and cooling condition were settled, two different re-solidification materials were extracted from the reactor and visible window. Analytical study is performed to characterize these unknown materials by XRD(X-Ray Diffraction), FT-IR(Fourier Transform Infrared Spectroscopy), and EA(Elemental Analyzer). From analytical results, re-solidification materials from heating and cooling cycles are very similar to original material of ammonium carbonate.

Analysis on the Optimum Location of an Wet Air Cleaner in a Livestock House using CFD technology (전산유체역학 기법을 이용한 돈사 내 습식 공기 정화기의 적정 위치 설계)

  • Kwon, Kyeong-Seok;Lee, In-Bok;Hwang, Hyun-Seob;Bitog, Jessie.P.;Hong, Se-Woon;Seo, Il-Hwan;Choi, Ji-Sun;Song, Sang-Hyeon;Moon, Oun-Kyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.19-29
    • /
    • 2010
  • In South Korea, as the living standard has been getting higher, meat consumption is steadily increasing. To meet the country's demand, livestock houses become larger and wider with increased raising density. In larger livestock houses, pollutants such as flake of pig skin, excrement, odor, various dusts and noxious gas like ammonia are excessively accumulated inside the facility. These will cause weak immunity for the pigs, diminution of productivity and degeneration of working condition. These problems can be solved through the ventilation performance of the facility. In the winter time, ventilation must be controlled to minimum to maintain a suitable thermal condition. However, this affects the other internal environmental condition because of the minimum ventilation. The installation of "wet air cleaner" especially in the winter time can be an alternative solution. For efficient application of this machine, there is a need to understand the existing ventilation condition and analyze the interaction of existing ventilation system with the wet air cleaner considering its appropriate location. In this study, the existing ventilation system as well as the internal environmental condition negatively inside the facility with the wet air cleaner has been studied using CFD technology. The CFD simulation model was validated from the study conducted by Seo et al. (2008). Results show that the elimination rate of ammonia was 39.4 % and stability could be improved to 35.1 % (Comparing case 5 to 1 where wet air cleaner machine was not used). It can therefore be concluded that case 5 shows the optimum location of a wet air cleaner in the livestock house.

Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System (박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구)

  • Jang, Jaehwan;Park, Hyunchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • Among various De-NOx technologies, Urea-based Selective Catalytic Reduction (SCR) systems are known to be the most effective in marine diesel applications. The spraying and mixing behavior of the urea-water solution has a decisive effect on the system's net efficiency. Therefore, in this study, the spray behavior and ammonia uniformity with and without a static mixer were analyzed by CFD in order to optimize the SCR system. The results showed that the static mixer significantly affected the uniformity of velocity and ammonia concentration. Static mixers may be especially suited for marine SCR systems with space constraints.

Electroless Nickel Plating on Porous Carbon Substrate (다공성 탄소전극기지상의 무전해 니켈도금에 관한 연구)

  • Chun, So-Young;Rhyim, Young-Mok;Kim, Doo-Hyun;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.75-80
    • /
    • 2010
  • Electroless nickel plating on porous carbon substrate was investigated. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}$ to less than $20^{\circ}$ after ammonia pretreatment. The content of phosphorous in nickel deposit was decreased with increasing pH and then deposits became crystallized. The thickness of nickel deposit was increased with increasing pH. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 5 ppm and the thickness of nickel was not significantly affected by the concentration of $PdCl_2$.

Comparison of Acidic and Alkaline Bath in Electroless Nickel Plating on Porous Carbon Substrate (다공성 탄소전극상 무전해 니켈도금의 산성과 알칼리용액 비교 연구)

  • Chun, So-Young;Kang, In-Seok;Rhym, Young-Mok;Kim, Doo-Hyun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.105-110
    • /
    • 2010
  • Electroless nickel plating on porous carbon substrate for the application of MCFC electrodes was investigated. Acidic and alkaline bath were used for the electroless nickel plating. The pore sizes of carbon substrates were 16-20 ${\mu}m$ and over 20 ${\mu}m$. The carbon surface was changed from hydrophobic to hydrophilic after immersing the substrate in an ammonia solution for 40 min at $60^{\circ}C$. The contact angle of water was decreased from $85^{\circ}C$ to less than $20^{\circ}$ after ammonia pretreatment. The deposition rate in the alkaline bath was higher than that in the acidic bath. The deposition rate was increased with increasing pH in both acidic and alkaline bath. The content of phosphorous in nickel deposit was decreased with increasing pH in both acidic and alkaline bath. The contents of phosphorous is low in alkaline bath. The minimum concentration of $PdCl_2$ for the electroless nickel plating was 10 ppm in alkaline bath and 5 ppm in acidic bath. The thickness of nickel was not affected by the concentration of $PdCl_2$.