• Title/Summary/Keyword: Ammonia removal rate

Search Result 223, Processing Time 0.025 seconds

Performance of Rotating Biological Contactor (RBC) under Different Hydraulic Loading Rates and Rotational Speeds on Ammonia Removal in a Recirculating System

  • Son Maeng Hyun;Jeon Im Gi;Jo Jae-Yoon;Moon HaeYoung
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 1999
  • Air-drived rotating biological contactor (RBC) system, which is effective method in filtering performance, was tested for the nitrification capacity in a recirculating system. At ammonia concentrations between 0.029 and 0.528 mg/l, the effect of ammonia loading rate on ammonia removal rate at three different hydraulic loading rates could be defined by the following first­order regression models: Hydraulic loading rate of $14.8 m^3/m^3/day:\;y=39.2\times+3.4 (r^2=0.9137)$, Hydraulic loading rate of $26.5 m^3/m^3/day: y=53.3\times+4.0 (r^2=0.8686)$, Hydraulic loading rate of $37.3 m^3/m^3/day: y=58.4\times+4.2 (r^2=0.7755)$, where, $\times$ is ammonia loading rate (mg/l), y is ammonia removal rate $(g/m^3/day)$, The equations showed the optimal ammonia removal rate at the hydraulic loading rate of $26.5m^3/m^3/day$. Below the ammonia concentration of 2.72 mg/l, first-order regression models between ammonia loading rate and ammonia removal rate at three different rates of speed are defined as follows: Rotational speed of $0.75 rpm: y=28.5\times+4.7 (r^2=0.9143)$, Rotational speed of $1.0 rpm: y=33.6\times+8.4 (r^2=0.9534)$, Rotational speed of $2.0 rpm: y=28.9\times+3.6 (r^2=0.9488)$, where, x is ammonia loading rate (mg/l), y is ammonia removal rate $(g/m^3day)$. The equations show the ammonia removal rate at the rotational speed of 1.0 rpm is significantly higher than that at the rotational speed of either 0.75 rpm or 2.0 rpm (P<0.05).

  • PDF

Removal of #NH_3-N$ by using Immobilized Nitrifier Consortium in Polyvinyl Alcohol (PVA에 고정화된 질화세균에 의한 암모니아성 질소제거)

  • 서근학;김용하;조진구;김병진;서재관;박은주;김성구
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.479-483
    • /
    • 1999
  • Nitrifier consortium immobilized in polyvinyl alcohol was used for the removal of ammonia nitrogen from synthetic aquaculture water in the airlift bioreactor. At the aeration rate fo 0.15 vvm and bead packing volume fraction of 20%, airlift bioreactor was operated effectively for a removal of ammonia nitrogen and for a stability of operation. Ammonia nitrogen removal rate by airlift bioreactor was continuously increased with decreasing hydraulic residence time. At the HRT(hydraulic residence time) of 0.3 hour, ammonia nitrogen removal rate was 84.3 g/$m^3$.d and the highest ammonia nitrogen removal rate was 130.8 g/$m^3$.d when HRT was 0.1 hour.

  • PDF

Removal of NH(sub)3-N by Using Immobilized Nitrifier Consortium in PVA[Polyvinyl Alcohol]-I. Effect of Packing Fraction and Aeration Rate on Ammonia Nitrogen Removal (PVA에 고정화된 질화세균군에 의한 암모니아성 질소 제거 I. 충진율 및 공기 유입량이 암모니아성 질소제거에 미치는 영향)

  • 서근학;김병진;오창섭
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.314-319
    • /
    • 2001
  • A nitrifier consortium immobilized in polyvinyl alcohol was used to remove ammonia nitrogen from synthetic wastewater in an airlift bioreactor. The minimum aeration rates were 0.4, 0.6, 0.8 and 1.0 vvm for 5, 10, 15 and 20% immobilized bead packing volume fraction, respectively. The efficient packing fraction and the aeration rate for ammonia nitrogen removal were 15% and 2.4 vvm, respectively. With a hydraulic retention time of 0.5hr, the removal rate and the efficiency of ammonia nitrogen removal were 1685 g/㎥$.$day and 48% at an influent ammonia nitrogen concentration of 75 g/㎥.

  • PDF

Ammonia Removal Model Based on the Equilibrium and Mass Transfer Principles

  • Yoon, Hyein;Lim, Ji-Hye;Chung, Hyung-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.555-561
    • /
    • 2008
  • In air stripping of ammonia from the aqueous solution, a new removal model was presented considering the equilibrium principles for the ammonia in aqueous solution and between the aqueous and air phase. The effects of pH, temperature and airflow rate on the ammonia removal were evaluated with the model. In addition, the saturation degree of ammonia in air was defined and used to evaluate the effect of each experimental factor on the removal rate. As pH (8.9 to 11.9) or temperature (20 to 50 oC) was increased, the overall removal rate constants in all cases were appeared to be increased. Our presented model shows that the degrees of saturation were about the same (0.45) in all cases when the airflow condition remains the same. This result indicates that the effect of pH and temperature were directly taken into consideration in the model equation. As the airflow increases, the overall removal rate constants were increased in all cases as expected. However, the saturation degree was exponentially decreased with increasing the airflow rate in the air phase (or above-surface) aeration. In the subsurface aeration the saturation degree remains a constant value of 0.65 even though the airflow rate was increased. These results indicate that the degree of saturation is affected mainly by the turbulence of the aqueous solution and remains the same above a certain airflow rate.

Effect of Operating Condition of Stripping Process on Ammonia Removal for Pre-treatment of Swine Wastewater (축산폐수 전처리를 위한 암모니아 탈기공정의 운전조건이 암모니아 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2004
  • Lab-scale experiments have been carried out to investigate ammonia stripping with a modified spray tower for removing ammonia nitrogen from swine wastewater. The operating conditions such as initial pH, temperature, air flow, hole size of distributor determining the diameter of water drops, and influent solids concentration were closely examined focusing on removal efficiency of ammonia. As a result of the experiment, in order to achieve high rate of ammonia removal by the air stripping system, the air flow rate must be supplied at high rate with sufficiently high initial pH, temperature. The optimum operating condition to meet the residual ammonia concentration of 300 mg/L was the initial pH of 11.0 at $35^{\circ}C$ with the air flow rate of 20 L/min. It also showed that the smaller hole size is, the higher removal rate of ammonia is expected. However, when used a small sized distributor (2 mm), the flooding problem at the upper column occurred due to clogging of the hole. With regard to the influent solids concentration, it was showed that the lower concentration of solids, the higher removal rate of ammonia. The removal of particulate materials in influent led to improve the removal efficiency of ammonia, rather than to control the operating condition including initial pH, temperature, and air flow. The empirical correlation between KLa and operating parameters would be driven as, $K_{La}=(0.0003T-0.0047){\cdot}G^{0.3926}{\cdot}L^{-0.5169}{\cdot}C^{-0. 1849}$. The calculated $K_{La}$ from proposed formula can be used effectively to estimate the optimum reaction time and to calculate the volume of modified spray tower system.

Effects of Operating Parameters on the Removal Performance of Ammonia Nitrogen by Electrodialysis (전기투석에 의한 암모니아성질소의 제거 시 운전인자의 영향)

  • Yoon, Tae-Kyung;Lee, Gang-Choon;Jung, Byung-Gil;Han, Young-Rip;Sung, Nak-Chang
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To evaluate the feasibility of electrodialysis for ammonia nitrogen removal from wastewater, the effects of operating parameters such as diluate concentration, applied voltage and flow rate on the removal of ammonia nitrogen were experimentally estimated. The removal rate was evaluated by measuring the elapsed time for ammonia nitrogen concentration of diluate to reach 20 mg/L. Limiting current density (LCD) linearly increased with ammonia nitrogen concentration and flow rate. The elapsed time was linearly proportional to initial concentration of diluate. Due to relatively large equivalent ion conductivity and ion mobility of ammonia nitrogen, the removal rate increased consistently with flow rate. Increase in the applied voltage gave positive effect to removal rate. From the operation of the electrodialysis module used in this research, the flow rate of 3.2 L/min and 80~90% of applied voltage for LCD are recommended as the optimum operating condition for the removal from high concentrate ammonia nitrogen solution.

Modified Ammonia Removal Model Based on Equilibrium and Mass Transfer Principles

  • Shanableh, A.;Imteaz, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1920-1926
    • /
    • 2010
  • Yoon et $al.^1$ presented an approximate mathmatical model to describe ammonia removal from an experimental batch reactor system with gaseous headspace. The development of the model was initially based on assuming instantaneous equilibrium between ammonia in the aqueous and gas phases. In the model, a "saturation factor, $\beta$" was defined as a constant and used to check whether the equilibrium assumption was appropriate. The authors used the trends established by the estimated $\beta$ values to conclude that the equilibrium assumption was not valid. The authors presented valuable experimental results obtained using a carefully designed system and the model used to analyze the results accounted for the following effects: speciation of ammonia between $NH_3$ and $NH^+_4$ as a function of pH; temperature dependence of the reactions constants; and air flow rate. In this article, an alternative model based on the exact solution of the governing mass-balance differential equations was developed and used to describe ammonia removal without relying on the use of the saturation factor. The modified model was also extended to mathematically describe the pH dependence of the ammonia removal rate, in addition to accounting for the speciation of ammonia, temperature dependence of reactions constants, and air flow rate. The modified model was used to extend the analysis of the original experimental data presented by Yoon et $al.^1$ and the results matched the theory in an excellent manner.

A Study on the Decompressed Ammonia Stripping from Ammonia Contained Wastewater (폐수의 감압 암모니아 탈기에 관한 연구)

  • 신대윤;오유경
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims at finding out pertinent reaction conditions for treating high concentration ammonia contained in N-chemical factory wastewater with decompressed ammonia stripping method that was designed. And it also tries to investigate adsorption capability of removed ammonia to soil. The results from experiments are as follows ; 1. The removal rate of N $H_3$-N of synthetic wastewater was under 85% at pH 10 with decompressed ammonia stripping method. The reaction time in pressure 360 mmHg at pH 11 and 12 was shorter than in 460 mmHg, and the removal rate of N $H_3$-N with decompressed ammonia stripping method at 9$0^{\circ}C$ was 11~15% higher than air stripping 2. The optimum conditions for decompressed ammonia stripping with synthetic sample were shown as pH 12, temperature 9$0^{\circ}C$, internal reaction pressure 460 mmHg and reaction time 50 minutes. These conditions were applied to treat the wastewater containing organic-N 290.5mg/$\ell$, N $H_3$-N 168.9mg/$\ell$, N $O_2$-N 23.2mg/$\ell$, N $O_3$-N 252.4mg/$\ell$, T-N 735mg/$\ell$. Organic-N turned out to be removed 60%, the removal rate of N $H_3$-N IS 94%, T-N is 50%. But N $O_2$-N and N $O_3$-N were increased with 7.8% and 14.9% respectively. 3. The CO $D_{Sr}$ removal rate in decompressed ammonia stripping reaction was 42% and S $O_4$$^{2-}$ was removed 8.2%. It was turned out caused with higher pH and thermolysis. 4. In soil adsorption of ammonia desorbed from the decompressed stripping process of wastewater, the recovery rate was 76% in wet soil.

  • PDF

Ammonia Nitrogen Removal in Wastewater Using Microwave Irradiation (마이크로웨이브를 이용한 폐수 내 고농도 암모니아성질소 제거)

  • Shin, Soyeun;Koo, Bonheung;Kim, Taehyun;Lee, Yuhak;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.486-490
    • /
    • 2014
  • Industrial use of microwave heating as an alternative to conventional heating is becoming popular mainly due to dramatic reductions in reaction time. Therefore, this work experimentally determined the effect of microwave irradiation on ammonia nitrogen removal in wastewater. The effects of air flow rate (0.3~0.9 L/min), treatment temperature ($70{\sim}100^{\circ}C$), and initial pH (9~11) were characterized. As the air flow rate increased from 0.3 to 0.9 L/min, the ammonia removal rate constant (k) increased from -0.6642 to $-1.0755min^{-1}$. As the temperature increased from 70 to $100^{\circ}C$, k increased -0.0338 to $-1.0755min^{-1}$. As the pH increased from 9 to 11, k increased -0.2443 to $-1.0755min^{-1}$. Ammonia removal was strongly dependent on temperature and pH rather than air flow rate. The results show that microwave irradiation is effective in ammonia nitrogen removal in wastewater due to advantages of fast and effective processing.

Demonstration Study on Ammonia Stripping in Electronic Industry Wastewater with High Concentrations of Ammonia Nitrogen (고농도 암모니아를 함유한 전자 폐수의 암모니아 탈기 실증 연구)

  • Jae Hyun Son;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.297-304
    • /
    • 2023
  • The rapid advancement of the high-tech electronics industry has led to a significant increase in high-concentration ammonia wastewater. Various methods have been attempted to reliably treat wastewater containing high concentrations of ammonia, but no successful technology has yet been developed and applied. In this study, the removal efficiency and characteristics of ammonia nitrogen was evaluated according to changes in temperature, air loading rate, and liquid loading rate using a closed circulation countercurrent packed tower type demonstration facility for wastewater containing high concentrations of ammonia generated in the high-tech electronics industry. The temperature was varied while maintaining operating conditions of a wastewater flowrate of 20.8 m3 h-1 and an air flow rate of 18,000 Nm3 h-1. The results showed that at temperatures of 45,50,55, and 60℃, the removal efficiencies of ammonia nitrogen (NH3-N) were 87.5%, 93.4%, 96.8%, and 98.7%, respectively. It was observed that temperature had the most significant impact on the removal efficiency of NH3-N under these conditions. As the air loading rate increases, the removal rate also increases, but the increase in removal efficiency is not significant because droplets from the absorption tower flow into the stripping tower. Even if the liquid loading rate was changed by ±30%, the removal rate did not change significantly. This does not mean that the removal rate was unaffected, but was believed to be due to the relatively high air load rate. Through demonstration research, it was confirmed that ammonia stripping is a reliable technology that can stably treat high-concentration ammonia wastewater generated in the high-tech electronics industry.