DOI QR코드

DOI QR Code

Demonstration Study on Ammonia Stripping in Electronic Industry Wastewater with High Concentrations of Ammonia Nitrogen

고농도 암모니아를 함유한 전자 폐수의 암모니아 탈기 실증 연구

  • Jae Hyun Son (Department of Convergence Engineering, Graduate School of Venture, Hoseo University) ;
  • Younghee Kim (Department of Convergence Engineering, Graduate School of Venture, Hoseo University)
  • 손재현 (호서대학교 벤처대학원 융합공학과) ;
  • 김영희 (호서대학교 벤처대학원 융합공학과)
  • Received : 2023.10.06
  • Accepted : 2023.10.17
  • Published : 2023.12.31

Abstract

The rapid advancement of the high-tech electronics industry has led to a significant increase in high-concentration ammonia wastewater. Various methods have been attempted to reliably treat wastewater containing high concentrations of ammonia, but no successful technology has yet been developed and applied. In this study, the removal efficiency and characteristics of ammonia nitrogen was evaluated according to changes in temperature, air loading rate, and liquid loading rate using a closed circulation countercurrent packed tower type demonstration facility for wastewater containing high concentrations of ammonia generated in the high-tech electronics industry. The temperature was varied while maintaining operating conditions of a wastewater flowrate of 20.8 m3 h-1 and an air flow rate of 18,000 Nm3 h-1. The results showed that at temperatures of 45,50,55, and 60℃, the removal efficiencies of ammonia nitrogen (NH3-N) were 87.5%, 93.4%, 96.8%, and 98.7%, respectively. It was observed that temperature had the most significant impact on the removal efficiency of NH3-N under these conditions. As the air loading rate increases, the removal rate also increases, but the increase in removal efficiency is not significant because droplets from the absorption tower flow into the stripping tower. Even if the liquid loading rate was changed by ±30%, the removal rate did not change significantly. This does not mean that the removal rate was unaffected, but was believed to be due to the relatively high air load rate. Through demonstration research, it was confirmed that ammonia stripping is a reliable technology that can stably treat high-concentration ammonia wastewater generated in the high-tech electronics industry.

첨단 전자 제품 산업의 비약적인 발전은 환경적 측면에서 고농도 암모니아 폐수의 증가를 초래했다. 고농도 암모니아 폐수를 안정적으로 처리하기 위해 다양한 방법의 기술이 시도되고 있으나, 지금까지 성공적인 기술이 개발되어 적용되지는 못하고 있다. 본 연구에서는 첨단 전자산업에서 발생하는 고농도 암모니아 함유 폐수에 대하여 밀폐(closed) 순환형 대향류 충전탑 형식의 실증설비를 이용하여 온도, 공기부하율 그리고 폐수부하율 변화에 따른 암모니아성 질소의 제거효율과 제거 특성을 평가하였다. 폐수량 20.8 m3 h-1, 공기량 18,000 Nm3 h-1의 운전 조건에서 온도를 45, 50, 55 그리고 60℃로 변경하여 운전한 결과, 암모니아성 질소(NH3-N)의 제거율은 각각 87.5, 93.4, 96.8 및 98.7%로 온도가 제거율에 미치는 가장 큰 영향 인자임을 알 수 있었다. 공기부하율을 증가시키면 제거율도 증가하나, 흡수탑의 액적(droplet)이 탈기탑으로 유입되어 제거율 증가는 크지 않았다. 폐수 부하율이 변경되어도 제거율은 크게 변하지 않았는데, 이는 제거율에 영향이 없는 것이 아니라, 상대적으로 높은 공기부하율에 기인한 것으로 판단된다. 실증연구를 통해 암모니아 탈기법은 첨단 전자산업에서 발생하는 고농도 암모니아 폐수를 안정적으로 처리할 수 있는 적정한 공법임을 확인할 수 있었다.

Keywords

References

  1. Jia, D., Lua, W., and Zhang, Y., "Research on Mechanism of Air Stripping Enabled Ammonia Removal from Industrial Wastewater and Its Application," Chem. Eng. Trans., 62, 115-120 (2017).
  2. Westrick, J. J., Cummins, M. D., and Cohen, J. M., "Breakpoint Chlorination/Activated Carbon Treatment:Effect on Volatile Halogenated Organics," US EPA, Report No. EPA-600/2-78-165, 7 (1978).
  3. USEPA, "Ammonia-nitrogen Removal by Breakpoint Chlorination," US EPA, Report No. EPA-670/2-73-058 (1973).
  4. Yang, S. H. and Kim, Y. H., "Application of Ferrate(VI) for Selective Removal of Cyanide from Plated Wastewater," Clean Technology, 27(2), 168-173 (2021).
  5. Barnes, D. and Bliss, P. J., "Biological Control of Nitrogen in Wastewater Treatment," E. & F.N. Spon, New York, 4-12 (1983).
  6. Eddy, M., Tchobanoglous G., Franklin, L., Burton, H., and Stensel, D., "Wastewater Engineering: Treatment and Reuse," McGraw-Hill, Boston, 4th edn., (2003).
  7. USEPA, "Manual Nitrogen Control," US EPA, Report No. EPA/625/R-93/010 (1993).
  8. https://www.drdarrinlew.us/water-quality/breakpoint-chlorination-for-removing-ammonia.html (accessed Sep. 2023).
  9. Mervyn, R., "Nitrification Inhibition in the Treatment of Sewage," The Royal Society of Chemistry, 8 (1985).
  10. Choi, J. H., Lee, S. C., Lee, J. H., Kim. G. M., and Lim, D. H., "Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology," Clean Technology, 28, 3, 218-226 (2022).
  11. Metcalf and Eddy I AECOM, "Wastewater Engineering: Treatment and Resource Recovery (Volume 2)," 5th ed., McGrawHill education (2016).
  12. Yuan, M. H., Chen, Y. H., Tsai, J. Y., and Chang, C. Y., "Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed," Process Safety and Environmental Protection, 102, 777-785 (2016).
  13. Treybal, R. E., "Mass Transfer Operations, 3rd Edition. McGraw-Hill," New York (1980).
  14. Onda, K., Takeuchi, H., and Okumoto, Y., "Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns," Journal of Chemical Engineering of Japan, 1(1), 56-62 (1968). https://doi.org/10.1252/jcej.1.56
  15. Kavanaugh, M. C. and Trussell, R. R., "Design of Aeration Towers to Strip Volatile Contaminants from Drinking Water," J. AWWA, 72, 12, 684-692 (1980). https://doi.org/10.1002/j.1551-8833.1980.tb04613.x
  16. Jeffery, S., William, R, K., and Clifford, W. R., "Evaluating the Onda Mass Transfer Correlation for the Design of Packed-Column Air Stripping," Research and Technology, 82(1), 73-79 (1990). https://doi.org/10.1002/j.1551-8833.1990.tb06908.x
  17. Gossett, J. M., Cameron, C. E., Eckstrom, B. P., Goodman, C., and Lincoff, A., "Mass Transfer Coefficients and Henry's Constants for Packed-Tower Air Stripping of Volatile Organics: Measurements and Correlation," Engineering & Services Laboratory, Air Force Engineering & Services Center: Tyndall Air Force Base, Florida. Final Report ESL-TR-85-18 (1985).
  18. Hand, D. W., Crittenden, J. C., Gehin, J. L., and Lykins, B. W., "Design and Evaluation of an Air Stripping Tower for Removing VOCs from Groundwater," JAWWA, 78(9), 87-97 (1986). https://doi.org/10.1002/j.1551-8833.1986.tb05815.x