• Title/Summary/Keyword: Ammonia nitrogen adsorption

Search Result 41, Processing Time 0.03 seconds

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

ESR Analysis of Cupric Ion Species Exchanged into NaH-ZSM-5 Gallosilicate

  • Yu, Jong-Sung;Kim, Jeong-Yeon
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • ZSM-5 gallosilicate molecular sieves was synthesized and cupric ion was ion-exchanged into the gallosilicate. The locations of Cu(ll) species in the framework and their interactions with various adsorbates were characterized by combined electron spin resonance(ESR) and electron spin echo modulation(ESEM) methods. It was found that in a fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules. This species is located in the channel intersections of two sinusoidal channels and rotates rapidly at room temperature. Evacuation removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to of oxygens in the channel wall. Dehydration produces two Cu(II) species, both of which are located in sites inaccessible to oxygen as evidenced by non-broadening of its ESR lines by oxygen. Adsorption of adsorbate molecules such as water, alcohols, ammonia, acetonitrile and ethylene on dehydrated CuNaH-ZSM-5 gallosilicate materials causes changes in the ESR spectrum of Cu(II), indicating the migration of Cu(II) into main channels to form complexes with these adsorbates there. Cu(II) forms a complex with two molecules of methanol, ethanol and propanol, respectively as evidenced by ESR parameters and ESEM data. Cu(II) also forms a square planar complex with four molecules of ammonia, based on the resolved nitrogen superhyperfine interactions and their ESEM parameters. Cu(II) forms a complex with two molecules of acetonitrile based on the ESR parameters and ESEM data. Interestingly, however, only part of Cu(II) interacts indirectly with one molecule of nonpolar ethylene based on ESR and ESEM analyses.

  • PDF

Adsorbate Interactions of Cu(II) Ion-Exchanged into Mesoporous Aluminosilicate MCM-41 Analyzed by Electron Spin Resonance and Electron Spin Echo Modulation

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.109-126
    • /
    • 1999
  • The location of Cu(II) exchanged into measoporous aluminosilicate MCM-41(AlMCM-41) material and its interaction with various adsorbate molecules were investigated by electron spin resonance and electron spin echo modulation spectroscopies. Cu(II) is fully coordinated to adsorbates in a wide open mesopore of AlMCM-41 for the formation of favorable complexes. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules as evidenced by an isotropic room temperature ESR signal. This species is located in a cylindrical MCM-41 channel and rotates rapidly at room temperature. Evacuation at room temperature removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to oxygens in an MCM-41 channel wall. Dehydration at 450$^{\circ}C$ produces one Cu(II) species located on the internal wall of a channel, which is easily accessible to adsorbates. Adsorption of adsorbate molecules such as water, methanol, ammonia, pyridine, aniline, acetonitrile, benzene, and ethylene on a dehydrated Cu-AlMCM-41 material causes changes in the ESR spectrum of Cu(II), indicating the complex formation with these adsorbates. Cu(II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM analysis like upon water adsorption. Cu(II) also forms a square planar complex containing four molecules of N-containing adsorbates such as ammonia, pyridine and aniline based on resolved nitrogen superhyperfine interaction and their ESR parameters. However, Cu(II) forms a complex with six-molecules of acetonitrile based on ESR parameters. Only one molecule of benzene or ethylene is coordinated to Cu(II).

  • PDF

오존 전처리 공정이 생물활성탄 공정의 효율에 미치는 영향

  • Lee, Sang-Hun;Mun, Sun-Sik;Sin, Jong-Cheol;Choe, Gwang-Geun;Park, Dae-Won;Sim, Sang-Jun;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.361-364
    • /
    • 2002
  • BAC (biological activated carbon) process is a combination of biodegradation and active carbon adsorption. Pre-ozonation of raw water increased in biodegradable organic fraction. This study is to investigate the enhancement of dissolved organic matter removals by pre-ozonation process combined with BAC process at a semi-pilot scale. By biodegradation improvement in pre-ozonation process. the charge of adsorption was reduced and the life of biological activated carbon is extended. And, 48 % of total DOC was remove in the upper compartment of BAC column. The removal of the nitrogen-ammonia shows a considerably high removal ratio with 75.9 %.

  • PDF

Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes (촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성)

  • Kim, Kwang-Wook;Kim, Young-Jun;Kim, In-Tae;Park, Gun-Ill;Lee, Eil-Hee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at $IrO_2$, $RuO_2$, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of $RuO_2{\approx}IrO_2>Pt$ in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of $80mA/cm^2$, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The $RuO_2$ electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.

Synthesis of Nano Structured Silica and Carbon Materials and Their Application (계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용)

  • Park Seungkyu;Kim Jongyun;Cho Wangoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.321-328
    • /
    • 2004
  • Nano silica ball and nano carbon ball are developed commercially by template synthesis method. Adsorption of unpleasant smelling substances such as ammonia, trimethylamine, acetaldehyde and methyl mercaptane onto nano carbon ball with hollow macroporous core/mesoporous shell structures, nano carbon ball, was investigated and compared with that onto odor adsorbent materials, activated carbon, commercially available. The adsorption and decomposition of malodor at nano carbon ball exhibited superior than those onto activated carbon. The physicochemical properties such as mesopore size distributions, large nitrogen BET specific surface area and large pore volume and decomposition of malodor were studied to interpret the predominant adsorption performance. The nano carbon ball is expected to be useful in many applications such as deodorizers, adsorbent of pollutants.

Synthesis and characterization of MCM-41 type aluminosilicates (MCM-41형태의 알루미노실리케이트의 합성특성)

  • Lee, Sung-Hee;Lee, Dong-Kyu;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1231-1234
    • /
    • 2003
  • A sample procedure has been described to room temperature synthesis, mesoporous aluminosilicate materials with strong surface acidity by using a cationic surfactnat cetyltrimethylammonium bromide(CTABr) as the template agent. All samples were charecterized by X-ray diffraction(XRD) and nitrogen adsorption. The crystallinity and surface area of MCM-41 type aluminosilicats decrease with decreasing of Si/Al ratio. The influence of the aluminum contents of MCM-41 on the coordination of Al and on the acidity is studied by $^{27}Al$ MAS NMR and temperature programmed desorption of ammonia(TPD). It was shown that the incorporation of Al atoms into the framework causes increasing of acid site surface. And then Al atoms in the framework were incorporated tetrahedrally in structure, which gave a rise to cationic sites in the framework.

  • PDF

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

Improvement of Rapid Sand Filtration to Two Stage Dual Media Filtration System in Water Treatment Plant (정수처리장 사여과지의 이단이중여과재 시스템으로의 개량)

  • Woo, Dal-Sik;Kim, Jooneon;Hwang, Byung-Gi;Chae, Su-Kweon;Jo, Kwanhyung
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.737-742
    • /
    • 2014
  • This study aimed for evaluating the applicability of the two stage dual media filtration system in field water treatment plant. The field plant of two stage and dual media filtration system was operated for 2 months. Average iron concentrations of the settled water, existing filtered water and second stage filtered water was 0.041 mg/L, 0.007 mg/L and 0.005 mg/L, respectively. Removal efficiency of iron concentration in the second stage is appropriately 35% more than in existing filtered water. Also removal efficiency of residual chlorine in the dual media filtration system is relatively 42.3% more than in existing filtered water due to adsorption of activated carbon, but the removal of ammonia nitrogen by adsorption is insufficient. Average concentrations of THM and chloroform in the settled water are 0.033 mg/L, 0.026 mg/L, respectively and in existing filtered water are 0.023 mg/L and 0.023 mg/L. Average concentrations of THM and chloroform in the dual media filtration system are 0.008 mg/L and 0.013 mg/L. Therefore removal efficiency of THM concentration in second stage is more than 66.4% in existing filtrated water. Also removal efficiency of chloroform in the dual media filtration system is more than 50.0% in existing filtered water because of the adsorption of activated carbon. In this case backwashing period in dual stage system is 4~5 days, but in existing filtration system is 1~2 days.

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.