• Title/Summary/Keyword: Ammonia injection

Search Result 104, Processing Time 0.027 seconds

Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia (가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성)

  • Ryu, Kyunghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

A Study for Optimal Design of the AIG to Improve the Performance of DeNOx Facilities Installed in Combined Cycle Plant (복합화력 탈질설비 성능향상을 위한 암모니아 주입 그리드의 최적설계 방안에 관한 연구)

  • Kim, Kwang-Chu;Park, Man-Heung;Yoon, Jun-Kyu;Lim, Jong-Han
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.811-820
    • /
    • 2007
  • A Study on the optimal design of the AIG(Ammonia Injection Grid) to improve the performance of DeNOx facilities in the HRSG(Heat Recovery Steam Generator) was performed using the CFD analysis. On the basis of the flow analysis results in the case that the AIG in the HRSG was not installed, the numerical analyses according to the positions of AIG, injection angles of nozzle and the control of ammonia injection quantity were carried out. The standard deviation according to factors was calculated for quantitative comparison. As the results, the AIG in the HRSG should be installed in the position that the uniform flow field shows through the exact flow analysis in the previous of the AIG design and installation. In the case the AIG has already been installed and non uniform flow distribution shows, it is recommended that flow correction device or KoNOx catalyst should be used. Otherwise, the control of ammonia injection angle or the ammonia injection quantity using the velocity profile analysis is demanded to accomplish the optimal performance.

A Study on the Uniform Mixing of Ammonia-Air with the Change of Ammonia Supply Device Shape in a De-NOx System (탈질설비에서 암모니아 혼합기의 형상에 따른 암모니아-공기 균일 혼합에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.20-26
    • /
    • 2019
  • Selective catalytic reduction(SCR) method is widely used among various methods for reducing nitrogen oxides in combustion devices of coal power plant. In the present study, the computational fluid dynamic analysis was accomplished to derive the optimal shape of ammonia-dilution air mixing device in a ammonia injection grid. The distribution characteristics of flow and $NH_3$ concentration had been elucidated for the reference shape of ammonia mixing device(Case 1). In the mixing device of Case 1, it could be seen that $NH_3$ distribution was shifted to the wall opposite to the inlet of the ammonia injection pipe. For the improvement of $NH_3$ distribution, the case(Case 2) with closing one upper injection hole and 4 side injection holes, the case(Case 3) with installing horizontal plate at the upper of ammonia injection pipe, the case(Case 4) with installing horizontal plate and horizontal arc plate at he upper of ammonia injection pipe were investigated by analyzing flow and $NH_3$ concentration distributions. From the present study, it was found that the % RMS of $NH_3$ for Case 4 was 4.92%, which was the smallest value among four cases, and the range of $R_{NH3}$ also has the optimally uniform distribution, -10.82~8.34%.

CFD Analysis on Gas Injection System of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine (디젤엔진 배출가스의 질소산화물 저감을 위한 Solid SCR용 가스분사 시스템의 전산유체해석 연구)

  • Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.73-83
    • /
    • 2014
  • CFD(computational fluid dynamics) model is developed to simulate direct injection of ammonia gas phase from ammonia transporting materials into the SCR catalyst in the exhaust pipe of the engine with solid SCR. Configurations of one-hole and four-hole nozzle, circumferential type, porous tube type, and the effect of mixer configurations which commonly used in liquid injection of AdBlue are considered for complex geometries. Mal-distribution index related to concentration of ammonia gas, flow uniformity index related to velocity distribution, and pressure drop related to flow resistance are compared for different configurations of complex geometries at the front section of SCR catalyst. These results are used to design the injection system of ammonia gas phase for solid SCR of target vehicle.

Effect of Injection Application of Pig Slurry on Ammonia and Nitrous Oxide Emission from Timothy (Phleum pretense L.) Sward

  • Park, Sang-Hyun;Lee, Bok-Rye;Jeong, Kwang-Hwa;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.145-149
    • /
    • 2018
  • The objective of this study was to determine the effect of injection application of pig slurry on ammonia ($NH_3$) and nitrous oxide ($N_2O$) emission from timothy (Phleum pretense L.) sward. The three treatments were applied: 1) only water as a control, 2) pig slurry application by broadcasting, 3) pig slurry application by injection. The pig slurry was applied at a rate of $200kg\;N\;ha^{-1}$. Total $NH_3$ and $N_2O$ emission, expressed as a cumulative amount throughout the measurement time (40 days), was $2.68kg\;NH_3-N\;ha^{-1}$ and $6.58g\;N_2O-N\;ha^{-1}$, respectively, in the control. The injection application of pig slurry decreased total $NH_3$ and $N_2O$ emission by 39.8% and 33.3%, respectively, compared to broadcasting application of pig slurry. The present study clearly showed that injection application exhibited positive roles in reducing N losses through $NH_3$ and $N_2O$ emission.

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Ammonia Dual Fuel Approaches with Gasoline and Diesel in the Internal Combustion Engines (가솔린 및 디젤 엔진에서의 암모니아 이중연료 적용 연구)

  • Wooe, Y.;Jang, J.Y.;Lee, Y.J.;Kim, J.N.
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.273-275
    • /
    • 2014
  • An ammonia fuel system is developed and applied to both a spark ignition engine and a compression ignition engine to use ammonia as primary fuel in this study. Ammonia is injected separately into the intake manifold in liquid phase while gasoline or diesel is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline or diesel, the spark or diesel injection timing is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output with large amount of ammonia. The final goal of the study is to implement a methodology to ignite ammonia-air mixture and have complete combustion without any use of the conventional fuels.

  • PDF

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.