• Title/Summary/Keyword: Ammonia gas

Search Result 722, Processing Time 0.031 seconds

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

Effects of Hydraulic Rentention Time on Anaerobic Digestion of the Mixture of Nightsoil and Septic Tank Sludge (소화조(消化槽)의 수리학적(水理學的) 체류시간(滯留時間)이 분뇨(糞尿)와 정화조(淨化槽)슬러지 혼합물(混合物)의 혐기성소화(嫌氣性消化)에 미치는 영향(影響))

  • Lee, Kwang Ho;Yang, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.117-127
    • /
    • 1983
  • An experimental research was performed employing the two stage anaerobic digestion of the mixture of the nightsoil and septic tank sludge to determine the effects of various hydraulic retention time of the digestion on chemical characteristics and treatment effeciency, thus determining the proper retention time. Results of the research are as follows, 1. Volatile-acid decreased as HRT increased. 2. Alklinity and ammonia-N tended to increase as HRT increased as did pH values, however, were observed to be constant at higher HRT values than 15 days. 3. The removal efficiencies of TBOD, TCOD and VS increased as HRT increased. 4. The removal efficiency of volatile solid decreased as VS loading increased. 5. It was observed that the rates of gas production were: 0.33 with HRT of 5 days, 0.58 with HRT of 15 days and $0.57m^3/kg$ VS fed/day with HRT of 25 days respectively. It is believed that the highest rate of gas production was at HRT of 15 days. 6. The sludge settling experiment showed that the minimum settling time required to ensure the desired underflow concentraton was estimated to be 8.6 days.

  • PDF

Method for Rapid Determination and Removal of Nitrogen Oxides in Flue Gas (II). Removal of Nitrogen Oxides Using Ammonia (배기가스중 질소산화물의 신속측정법과 그 제거에 관한 연구 (제 2 보). 암모니아에 의한 $NO_x$의제거)

  • Yong Keun Lee;Kee Jung Paeng;Kyu Ja Hwang
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.207-215
    • /
    • 1986
  • A new method was proposed to improve removal of nitrogen oxides $(NO_x)$ in exhaust gas by the reduction method using ammonia. At the relative humidity of 60%, 50 ppm of $NO_x$ was decomposed at the rate of 1% per hour in the reaction chamber. On the other hand, by adding $NH_3$ which was 5 times more concentrated than NOx, the decomposition rate increased to 6% per hour for 50 ppm $NO_x$ and 10% per hour for 20ppm $NO_x$. Within the actual exhausted gases, the decomposition rate of $NO_x$ reached the maximum 15% per hour because of coexisted reducing gases, such as hydrocarbon and carbon monoxide, and excess humidity containing trace metal ions. In the presence of acidic $SO_2$ gas, the decomposition rate of $NO_x$ decreased. The decomposition of $NO_x$ seems to be caused by the mist which is added to the system, and $NH_3$ in the mist which reduces $NO_x$.

  • PDF

Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Shin, Nyeon Hak;Jeong, Jin Suk;Kim, Eun Tae;Lee, Su Kyoung;Lee, Il Dong;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.71-79
    • /
    • 2018
  • Objective: Gelidium amansii (Lamouroux) is a red alga belonging to the family Gelidaceae and is commonly found in the shallow coasts of many East Asian countries, including Korea, China, and Japan. G. amansii has traditionally been utilized as an edible alga, and has various biological activities. The objective of this study was to determine whether dietary supplementation of G. amansii could be useful for improving ruminal fermentation. Methods: As assessed by in vitro fermentation parameters such as pH, total gas, volatile fatty acid (VFA) production, gas profile (methane, carbon dioxide, hydrogen, and ammonia), and microbial growth rate was compared to a basal diet with timothy hay. Cannulated Holstein cows were used as rumen fluid donors and 15 mL rumen fluid: buffer (1:2) was incubated for up to 72 h with four treatments with three replicates. The treatments were: control (timothy only), basal diet with 1% G. amansii extract, basal diet with 3% G. amansii extract, and basal diet with 5% G. amansii extract. Results: Overall, the results of our study indicate that G. amansii supplementation is potentially useful for improving ruminant growth performance, via increased total gas and VFA production, but does come with some undesirable effects, such as increasing pH, ammonia concentration, and methane production. In particular, real-time polymerase chain reaction indicated that the methanogenic archaea and Fibrobacter succinogenes populations were significantly reduced, while the Ruminococcus flavefaciens populations were significantly increased at 24 h, when supplemented with G. amansii extracts as compared with controls. Conclusion: More research is required to elucidate what G. amansii supplementation can do to improve growth performance, and its effect on methane production in ruminants.

Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro

  • Suh, Jung-Keun;Nejad, Jalil Ghassemi;Lee, Yoon-Seok;Kong, Hong-Sik;Lee, Jae-Sung;Lee, Hong-Gu
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.422-433
    • /
    • 2022
  • Objective: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. Methods: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). Results: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). Conclusion: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

Gas Sensing Characteristics of $SnO_{2}$ added with $TiO_{2},\;Pd,\;Pt$ and in for Trimethylamine Gas (Trimethylamine Gas 측정을 위한 $TiO_{2},\;Pd,\;Pt$ 및 In이 첨가된 $SnO_{2}$가스 센서의 특성)

  • Lee, Chang-Seop;Jung, Soon-Boon;Jun, Jae-Mok;Lee, In-Sun;Lee, Hyeong-Rag;Park, Young-Ho;Choi, Sung-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.29-33
    • /
    • 2007
  • This study investigates the use of $TiO_{2},\;Pd,\;Pt$, and In which greatly improves a sensitivity to trimethylamine gas. The metal-$SnO_{2}$ thick films were prepared by screen-printing method onto $Al_{2}O_{3}$ substrates with platinum electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of detecting gas concentration. This was then used to detect trimethylamine, dimethylamine, and ammonia vapours within the concentration range of 100-1000ppm. The gas sensing properties of metal-$SnO_{2}$ mixed thick films depended on the content and variety of metal. It was found that sensitivity and selectivity of the films dopped with 1 wt% Pd and 10 wt% $TiO_{2}$ for trimethylamin gas showed the best result at $250^{\circ}C$.

  • PDF

Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

  • Murillo, M.;Herrera, E.;Carrete, F.O.;Ruiz, O.;Serrato, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1395-1403
    • /
    • 2012
  • The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers… diets. Diet samples were collected with four esophageal cannulated steers ($350{\pm}3$ kg BW); and four ruminally cannulated heifers ($342{\pm}1.5$ kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen ($NH_3N$) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance.

Effects of Dietary Bacillus-based Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Son, K.S.;Kim, H.J.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.587-592
    • /
    • 2006
  • This study was conducted to evaluate the effects of supplementation with bacillus-based probiotic (Bacillus subtilis, $1.0{\times}10^7CFU/g$; Bacillus coagulans, $2.0{\times}10^6CFU/g$ and Lactobacillus acidophilus, $5.0{\times}10^6CFU/g$) on finishing pigs growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content and to determine the optimal addition level of this probiotic preparation. A total of forty eight pigs with an initial body weight (BW) of $90.60{\pm}2.94kg$ were allotted to three dietary treatments (four pigs per pen with four pens per treatment) according to a randomized complete block design. Dietary treatment included: 1) CON (basal diet); 2) BP1 (basal diet+bacillus-based probiotic 0.1%) and 3) BP2 (basal diet+bacillus-based probiotic 0.2%). The experiment lasted 6 weeks. Through the entire experimental period, ADG was improved by 11% (p<0.05) in pigs fed diets supplemented with 0.2% bacillus-based probiotic compared to pigs fed the basal diet. ADFI and gain/feed were not affected by the treatments (p>0.05). Supplementation of bacillus-based probiotic did not affect either DM and N digestibilities or blood characteristics (p>0.05) of pigs. Fecal ammonia nitrogen ($NH_3$-N) measured at the end of experiment was reduced (p<0.05) when pigs were fed the diet with 0.2% bacillus-based probiotic. Fecal butyric acid concentration also decreased significantly (p<0.05) whereas acetic acid and propionic acid concentrations were not affected (p>0.05) when pigs were fed diets with added bacillus-based probiotic. In conclusion, dietary supplementation of bacillus-based probiotic can increase growth performance and decrease fecal noxious gas content concentration.

Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients

  • Shim, S.B.;Verdonk, J.M.A.J.;Pellikaan, W.F.;Verstegen, W.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1444-1452
    • /
    • 2007
  • An in vitro experiment was conducted to evaluate the differences in microbial activity of five faecal inocula from weaned pigs and one faecal inoculum from unweaned pigs in combination with 6 substrates. The substrates tested were negative control diet, corn, soybean meal, oligofructose (OF), ground chicory roots and a mixture (60% chicory pulp and 40% OF). The inocula used were derived from pigs fed either a corn-soy based diet without antibiotics (NCON), the NCON diet supplemented with oligofructose (OF), a mixture of chicory pulp (40%) and OF (60%) (MIX), ground chicory roots (CHR) or the NCON diet supplemented with antibiotics (PCON). The cumulative gas production measured fermentation kinetics and end products, such as total gas production, ammonia and volatile fatty acids, were also determined. Both the substrate and the inoculum significantly affected the fermentation characteristics. The cumulative gas production curve showed that different substrates caused more differences in traits of fermentation kinetics than the different inocula. Inocula of weaned pigs gave a significantly higher VFA production compared to the inoculum from unweaned animals, whilst the rate of fermentation and the total gas produced did not differ. OF showed the highest fermentation kinetics and the lowest $NH_3$, pH and OM loss compared to other substrates. It was concluded that the microbial activity was significantly affected by substrate and inoculum. Inoculum from weaned pigs had more potential for microbial fermentation of the carbohydrate ingredients and oligofructose than that of unweaned pigs. A combination of high and low polymer inulin may be more beneficial to the gut ecosystem than using high- or low-polymer inulin alone.

The Study on the Realtime Evaluation of NH3 Absorption Efficiency Using Chemical Gas Sensor (가스센서를 활용한 암모니아 가스의 실시간 흡수 효율 평가에 관한 연구)

  • Lim, Jung-Jin;Kim, Han-Soo;Kim, Sun-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.233-239
    • /
    • 2013
  • This study was carried out to develop the realtime evaluation system of $NH_3$ absorption efficiency with gas sensors which were installed on the inlet and outlet of lab-scale scrubber system. The $NH_3$ absorption amount, calculated by sensor outcomes for 3 hr, 6 hr, and 12 hr of absorption process, was compared with the results analysed by Indo-phenol method for the absorption solution. Even though the difference between two methods was about 20%, the correlation coefficient between the two results was very high, more than 0.99. In addition, we could find very good correlation between pH, absorption amount and reaction time. Also we could find out the breakthrough time in the middle of absorption process. With more diverse experiment in the future, we can make gas sensor system for the realtime evaluation of the odor and/or air pollution treatment efficiency.