• Title/Summary/Keyword: Ammonia concentration

Search Result 1,146, Processing Time 0.033 seconds

Fabrication and Characterization of Thick Film Ammonia Gas Sensor (후막형 암모니아 가스 센서의 제조 및 가스 감응 특성)

  • Yun, Dong-Hyun;Kwon, Chul-Han;Hong, Hyung-Ki;Kim, Seung-Ryeol;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.445-450
    • /
    • 1997
  • An ammonia gas sensor with high sensitivity using thick-film technology were fabricated and examined. The material for sensing the ammonia gas was the mixture of oxide semiconductor, $FeO_{x}-WO_{3}-SnO_{2}$. The sensor exhibits resistance increase upon exposure to low concentration of ammonia gas. The resistance of the sensor is decreased, on the other hand, for exposure to reducing gases such as ethyl alcohol, methane, propane and carbon monoxide. A novel method for detecting ammonia gas quite selectively utilizing a sensor array consisting of an ammonia gas sensor and a compensation element were proposed and developed. The compensation element is a Pt-doped $WO_{3}-SnO_{2}$ gas sensor which shows opposite direction of resistance change in comparison with that of the ammonia gas sensor upon exposure to ammonia gas. Excellent selectivity has been achieved using the sensor array having two sensing elements.

  • PDF

Change of Ammonia Consumption with Gas Turbine Output in DeNOx System for a 580 MW Combined Cycle Power Plant (580 MW급 복합발전소 탈질설비에서 가스터빈 출력에 따른 암모니아 소모량 변화)

  • Jang, Yong-Woo;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.15 no.3
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, ammonia consumption by gas turbine output was adjusted to find out the amount of ammonia consumption that complies with the enhanced Air Quality Preservation Act and internal regulation emission standards in SCR type DeNOx System for a 580 MW Sejong Combined Cycle Power Plant. For measurements, the gas turbine output was varied to 50, 99, 149, 198 MW and ammonia consumption was adjusted with the combustion gas and ammonia supply conditions fixed at each stage. When the emission limit were change from 10 ppm to 8 ppm, ammonia consumption was increased from 78, 93, 105, 133 kg/h to 89, 113, 132, 176 kg/h. The increase rate of ammonia consumption was 14, 22, 26, 32% per output category compared to the 10 ppm emission limit, which was shown to increase as output increased.

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

Effect of Compost Turning Frequency on the Composting and Biofiltration (퇴비화 및 탈취처리에 퇴비 혼합 교반 빈도가 미치는 영향)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • The effects of turning frequency of in-vessel composting on ammonia emissions during composting of separated solids from swine slurry/sawdust mixtures and performance of biofiltration using the chicken manure compost were investigated. Separated solids from swine manure amended with sawdust was composted in a 226 L laboratory-scale in-vessel reactors under various turning frequency and continuous airflow (0.6 L/min.kg.dm) for three weeks. Three laboratory-scale manure compost biofilters were built to treat effluent gas from the composting of separated solid from swine manure amened with sawdust process. These experiments were continued over a period of three weeks. The composting of separated solid swine manure amended with sawdust and manure compost biofiltration system were evaluated to determine the turning frequency type that would be adequate for the rate of decomposition and compost odour reduction. The compost odour cleaning was measured based on ammonia gas concentration before and after passing through the manure compost biofilter. The average ammonia odor reduction in the manure compost biofilter was 96.9 % at R1 (no turning), 99.4 % at R2(once a day turning) and 89.0 % at R3(twice a day turning), respectively. The efficiency of ammonia reduction was mainly influenced by the turning frequency.

  • PDF

Recovery of Ammonium Salt from Nitrate-Containing Water by Iron Nanoparticles and Membrane Contactor

  • Hwang, Yu-Hoon;Kim, Do-Gun;Ahn, Yong-Tae;Moon, Chung-Man;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • This study investigates the complete removal of nitrate and the recovery of valuable ammonium salt by the combination of nanoscale zero-valent iron (NZVI) and a membrane contactor system. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The main end-product of nitrate reduction by NZVI was ammonia, and the solution pH was stably maintained around 10.5. Effective removal of ammonia was possible with the polytetrafluoroethylene membrane contactor system in all tested conditions. Among the various operation parameters including influent pH, concentration, temperature, and contact time, contact time and solution pH showed significant effects on the ammonia removal mechanism. Also, the osmotic distillation phenomena that deteriorate the mass transfer efficiency could be minimized by pre-heating the influent wastewater. The ammonia removal rate could be maximized by optimizing operation conditions and changing the membrane configuration. The combination of NZVI and the membrane contactor system could be a solution for nitrate removal and the recovery of valuable products.

Ammonia-nitrogen Removal in Sea Water by Using Electrolysis (전기분해법에 의한 해수내의 암모니아성 질소 제거)

  • 이병헌;이제근;길대수;곽순열
    • Journal of Aquaculture
    • /
    • v.10 no.4
    • /
    • pp.435-438
    • /
    • 1997
  • Biological ammonia removal system have been used conventionally for the seawater fish farming. But this process requires long hydraulic retention times and large area. Also it has a trouble of NO3-N accumulation in the system. Therefore, this study was conducted to find out the feasibility of effective nitrogen removal efficiency in the sea water fish farming system by electolysis. As the result, electrolysis system showed a good ammonia and nitrate nitrogen removal and E. coli sterilization efficiencies. Because of the high salinities in the seawater for electron transfer, electrolysis is an effictive water treatment process for seawater fish farming. The relation among ammonia removal efficiency, hydraulic retention time (HRT) and electric wattage (watt) with 10 mm electrod distance isas follow ; log [$NH_4^$+-N(%)]=0.431log(HRT(sec)$\times$Watt)+0.88(r=0.950) And the relation between ammonia removal efficiency and residual chlorine concentration in the seawater is as follow; $$NH_4^+-N(%)=48\cdotlog[Residual\;chlorine(mg/\ell)+28(r=0.892)$$

  • PDF

Effect of Vibration Stress on the Oxygen Consumption, Ammonia Excretion and Blood Characteristics of the Cultured Eel, Anguilla japonica (뱀장어, Anguilla japonica의 산소소비, 암모니아 배설 및 혈액성상에 미치는 진동의 영향)

  • 이정열;허준욱
    • Journal of Aquaculture
    • /
    • v.17 no.4
    • /
    • pp.262-267
    • /
    • 2004
  • Physiological responses (oxygen consumption, ammonia excretion, hemoglobin, red blood cell and white blood cell) of cultured eel, Anguilla japonica to vibration stress were studied in an indoor experimental system. Vibration of 76-93 dB (V) from an electric vibrator was provided in 15-minute intervals during daytime (0800-1800) over a ten day period. Oxygen consumption before the beginning of the experiment (0 day) was 83.9 mg $O_2$$.$kg$^{-1}$ ㆍhr$^{-1}$ . After 1, 5 and 10 days of stress respiration rate decreased by 37.5, 53.7 and 70.5%, respectively. Ammonia excretion showed a similar pattern to that of oxygen consumption. Ammonia excretion decreased by 80.1 % following 10 days of vibration stress. Blood hemoglobin concentration also decreased at 1, 3 and 10th day were 29.4% on day 1,83.9% on day 3 and 87.9% by day 10, while red blood cell counts at day 1 and day 10th were 59.8% and 84.7% lower than initial counts, respectively. The white blood cell count increased by 191.2% at day 7, dropping to 41.5% at day 10. Physiological activity was reduced by 50% following 3.4 days of vibration stress.

Industrial Wastewater Treatment Containing High Concentration of Ammonia with Low Energy Micro-Bubble Reactor (저에너지 마이크로버블 장치를 이용한 고농도 암모니아 공장 폐수 처리)

  • Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.286-291
    • /
    • 2016
  • This study was carried out to evaluate the feasibility of air-stripping by DIWS(Dip Injection Wet Scrubber) system on high concentration of ammonia wastewater more than 10,000 mg/L. In the case of changing temperature from $30^{\circ}C$ to $70^{\circ}C$ maintaining pH 12.5 within the 72 hours, the removal efficiency of T-N by the present treatment plant was increased to 90.5% which was initially kept 70.3%. Although the high concentration of T-N with 9,120~12,955 mg/L was treated by micro-bubble through DIWS system maintaining the temperature of $30^{\circ}C$ within the 20 hours, the removal efficiency of T-N reached 91.9%, which indicated the possibility of air-stripping.

EFFECT OF SUPPLEMENTARY UREA, GLUCOSE AND MINERALS ON THE IN VITRO DEGRADATION OF LOW QUALITY FEEDS

  • Oosting, S.J.;Verdonk, J.M.H.J.;Spinhoven, G.G.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.4
    • /
    • pp.583-590
    • /
    • 1989
  • Increasing levels of ammonia-N in the rumen fluid used for in vitro incubation were achieved by supplementation of the ration of the donor cows with urea and by addition of urea either with or without glucose to the rumen fluid after collection. The ration of the donor animals consisted of wheat straw (80%) and maize silage (20%). During the second half of the experiment the basal ration was supplemented with a mineral mixture. Wheat straw, Guinea grass and two rice straw varieties were incubated with the various kinds of rumen fluid. Parameters studied were: solubility, apparent organic matter disappearance after 48 hours of incubation ($OMD_{48}$), rate of organic matter degradation from 0 to 24 hours of incubation ($k_1$) and from 24 to 95 hours ($k_2$). The concentration of ammonia-N in the rumen fluid at which 95% of the maximal $OMD_{48}$ and k1 were reached (88.2 and 100.0 mg/l) were independent of the feed. With regard to the $k_2$ the required ammonia-N concentration to reach 95% of the maximal $k_2$ differed per feed. Mineral supplementation increased the OMD48 and $k_1$, but not the solubility and $k_2$. Glucose addition in combination with urea had no beneficial effect compared to urea supplementation alone.

An Estimation on the Feeding Values of Urea-mixed Zeolite In Vitro (In Vitro에 의한 제올라이트·요소합제(尿素合劑)의 사료효율(飼料效率) 판정(判定))

  • Rhee, Jae Ku;Lee, Ho Il
    • Korean Journal of Veterinary Research
    • /
    • v.21 no.2
    • /
    • pp.117-121
    • /
    • 1981
  • In order to estimate the efficiency of feed added urea-mixed zeolite the experiment was carried on in vitro. The results obtained were as follows: 1. The pH of all media added urea were inclined toward alkali, except 1% urea (included 99% zeolite) medium. 2. The concentration of ammonia in all media added urea-mixed zeolite was inversely proportional to added volume of zeolite; 1,349, 1,298, 1,255, 1,164 and $786{\mu}g/ml$ in 40%, 20%, 10%, 5% and 1% urea media respectively for 30 minutes incubation, and the concentration of ammonia in all media was increased steadily as incubation time proceeded until 9 hours. 3. The efficiency of adsorption of ammonia to zeolite of the feed added 40% urea mixture (dealing in the feed store) was hardly recognized. Accordingly, it is efficient to utilize the feed added 1~5% urea mixture, but it is of no use practica11y because they need much amount of zeolite.

  • PDF