• Title/Summary/Keyword: Ammonia beccarii

Search Result 12, Processing Time 0.03 seconds

Foramniferal Characteristics in the Ganghwa Tidal Flat (강화 남부 갯벌의 유공충 특성)

  • Woo, Han Jun;Lee, Yeon Gyu
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.51-65
    • /
    • 2006
  • Surface sediments for sedimentary analyses were sampled at 199 stations in the study area in August 2003. The surface sediments consisted of six sedimentary facies. Generally, sandy mud sediments dominated in the southern tidal flat of Ganghwa Island and sand sediments dominated in channel and subtidal zones of the western part of Ganghwa Island. The area of sandy mud sediment extended to eastward tidal flat compared to sedimentary facies in August 1997. In 30 surface sediment samples from the Ganghwa tidal flat and subtidal zone, 61 species were recorded in total assemblages, including 34 species of living population. Ammonia beccarii and Elphidium etigoense in living population and Ammonia beccarii, Elphidium etigoense, Jadammina sp. and Textularia earlandi in total assemblage were widely distributed. Generally, relatively large numbers of species and high values of species diversity occurred in the area of western part of tidal flat. Cluster analysis of total assemblages discriminates four biofacies. Biofacies 1 indicated eastern part of the tidal flat and biofacies 4 indicated western part of the tidal flat. Biofacies 3 were transitional zone between biofacies 1 and 4.

  • PDF

Stable Isotopic Compositions of Foraminifera of the Tidal Flat in the Gomso Bay of the Western Coast of Korea (서해안 곰소만 조간대 유공충의 안정동위원소 성분)

  • 박병권;이광식
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.183-187
    • /
    • 1994
  • The oxygen and carbon isotopic compositions of the foraminiferal species, Elphidirm dtigoense and Ammonia beccarii tepida, of the tidal flat in the Gomso Bay of the western coast of Korea have been measured. This work was intended to study the relationship between oxygen and carbon isotopic compositions of the foraminifera and present oceanographic environments, and also the difference between two foraminiferal species. The values of $\delta$/SUP 18/O and $\delta$/SUP 13/C of E. dtigoense varied from - 3.20% to + 0.58% and from - 5.26% to - 0.93%, respectively. The values of $\delta$/SUP 18/O and $\delta$/SUP 13/C of A. beccarii tepida varied from - 1.11% to + 0.61% and from - 2.04% to - 1.40%, respectively. Mo significant variations in these values occur from the samples among the upper, middle and lower tidal zones except for the one from the upper tidal zone that has extremely low value. The difference between the two foraminiferal species was 0.20% and 1.63% in the average values of $\delta$/SUP 18/O and $\delta$/SUP 13/C, respectively. The relationship between $\delta$/SUP 18/O and $\delta$/SUP 13/C values was positive in interspecies of two species.

  • PDF

Changes in Sedimentary Process and Distribution of Benthic Foraminifera in the Eastern Part of Kwangyang Bay, South Sea of Korea (광양만 동부해역의 퇴적과정 변화와 저서성 유공충 군집분포)

  • 김신정;김대철
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.1
    • /
    • pp.32-45
    • /
    • 1996
  • Analyses of surface sediment textures and recent benthic foraminifera were carried out to understand the change of sedimentary depositional processes in the eastern part of Kwangyang Bay. Echo-sounding images revealed that topographic change of the delta front sheet sand was caused by POSCO (Pohang Steel Company)'s dredging and reclaiming. The sand body prograded toward southeast. Fine sediments are distributed in the northeastern part of the study area. Identification of benthic foraminifera was conducted for the two selected cores from the sand body for the first time. Dominant species are Ammonia beccarii, Elphidium excavatum and Quinqueloculina lamarckiana. No abrupt change of benthic foraminiferal assemblage was observed from the sedimentary sequences.

Vertical Variations of Benthic Foraminiferal Assemblages in Core Sediments on Yeoja Bay, Southern Coast of Korea: Implications for Late Holocene Sea-Level Change (여자만 코어 퇴적물에서 나타나는 저서성 유공충 군집 변화: 홀로세 후기 해수면 변화 의의)

  • Jang, Seok-Hoon;Jeong, Da-Un;Lee, Yeon-Gyu
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.409-426
    • /
    • 2009
  • In the four sedimentary cores from Yeoja Bay, the analyses of grain size, benthic foraminiferal species compositions, assemblages and statistics were carried out to investigate the effects of late Holocene sea-level change on benthic foraminifera. The core sediments were mainly composed of fine-grained silt and clay. The benthic foraminifera were classified into 27 species of 16 genera, 30 species of 21 genera, 50 species of 29 genera and 52 species of 29 genera in Core YC-1 to 4, respectively. In the result of cluster analysis, it seemed that Group 1 (Core YC-1 and 2) of representative A. beccarii assemblages was deposited in upper bay environment and Group 2 (Core YC-3 and 4) of representative E. clavatum-A. beccarii assemblages was deposited in inner bay environment affected by offshore water. In the result of species composition analysis, the production frequency of A. beccarii was gradually decreased from low layer to upper layer, whereas production frequency of E. clavatum and P.F./T.F. was gradually increased to upward. These change patterns appeared in benthic and planktonic foraminifera seemed to reflect the late Holocene sea-level rise in Yeoja Bay.

Diversity of freshwater red algae at Khao Luang National Park, southern Thailand

  • Chankaew, W.;Sakset, A.;Chankaew, S.;Ganesan, E.K.;Necchi, Orlando Jr.;West, John A.
    • ALGAE
    • /
    • v.34 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Freshwater red algal diversity and the relationship with water conditions in 22 stream segments in the area around Khao Luang National Park, Nakhon Si Thammarat province, southern Thailand, were studied during a period of twelve months (May 2014 to April 2015). Sixteen species of freshwater red algae, belonging to eight genera (Audouinella, Balliopsis, Batrachospermum, Caloglossa, Compsopogon, Kumanoa, Sirodotia, and Thorea) were identified, which were all reported earlier for the country. Thorea clavata (Thoreaceae) was the most common species occurring in eight stream segments. Caloglossa beccarii sensu lato (Delesseriaceae) and Sirodotia huillensis Skuja (Batrachospermaceae) had the highest percent cover with up to 40% and 20% per stream segment, respectively. The water quality showed most sites to be unpolluted or ultra-oligotrophic to oligotrophic. Canonical Correspondence Analysis revealed some trends in occurrence of individual species with stream environmental variables: Batrachospermum sp.with strong current velocity; Kumanoa hirosei with high turbidity, total dissolved solid and alkalinity; Caloglossa beccarii with high conductivity; Kumanoa tabagatenensis with high ammonia-nitrogen and Thorea siamensis with high calcium and magnesium. In view of the scarce studies on the stream ecology of freshwater red algae in Philippines and neighbouring countries, it is expected that the data presented here would be helpful in more critical further studies in south-east Asia in general.

Spatial and Temporal Variations of Foraminifers as an Indicator of marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.59-73
    • /
    • 1998
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west cost of Korea, were collected to evaluate the effect of the outfall on benthic foraminifers. Heavy metal (Cu and Zn) polluted the eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifers, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifers abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants form the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifers, low number of Ammonia beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared of both downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-phyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifers do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-15 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Foraminifera as an Indicator of Marine Pollution

  • Shin, Im-Chul;Yi, Hi-Il
    • The Korean Journal of Quaternary Research
    • /
    • v.19 no.2
    • /
    • pp.35-37
    • /
    • 2005
  • Sediment samples from five stations at the Shihwa Lake sewage outfall, west coast of Korea, were collected to evaluate the effect of the outfall on benthic foraminifera. Heavy metal (Cu and Zn) polluted eastern part of the Shihwa Lake, adjacent to the Shihwa-Banwol Industrial Complexes, shows barren or nearly barren of benthic foraminifera, and the lowest number of species both at the core top and downcore. Excepting for the barren zone, pyritized benthic foraminifera abundantly occur both at the surface and downcore sediments in the western part of the Shihwa Lake, suggesting that foraminiferal disease by anoxic bacteria. Recent intrusion of pollutants from the Shihwa-Banwol Industrial Complexes and adjacent six major streams severely polluted the Shihwa Lake as shown by the low abundance (number/10 g) of benthic foraminifera, low number of A. beccarii, low species diversity, and absence of both Elphidium spp. and ostracodes at the surface sediments compared to the downcore. Except the barren zone, both pyritized and non-pyritized Ammonia beccarii occur dominantly in the surface sediments and downcore. Elphidium spp. (either pyritized or non-pyritized) do not occur in the surface sediments of whole stations. However, they occur from the entire downcore sediments except in the eastern part of Shihwa Lake. Arenaceous foraminifera do not inhabit in the heavily polluted areas as evidenced by the occurrence of relatively deep core depth (11-50 cm). Ostracodes occur at the downcore sediments, but they do not occur at the surface sediments. Ostracodes also do not occur at the heavily polluted areas in the eastern part of the Shihwa Lake both at the surface and downcore sediments, indicating that the abundance of ostracodes also can be used for a pollution indicator.

  • PDF

Depositional Processes of Fine-Grained Sediments and Foraminiferal Imprint of Estuarine Circulation by Summer Floods in Yoja Bay, Southern Coast of Korea

  • Lee, Yeon-Gyu;Jung, Kyu-Kui;Woo, Han-Jun;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.109-123
    • /
    • 2000
  • Depositional processes of fine-grained sediments were investigated on the basis of sediment transport vector analysis and identification of benthic foraminiferal assemblages in Yoja Bay, southern coast of Korea. The bay is a semi-enclosed embayment where extensive mud flats occur with a width up to about 4 km. Most surface sediments are poorly sorted (sorting values: 1.9-3.0 ${\phi}$) mud and silt (mean grain size: 6.0-8.7 ${\phi}$), except for the tidal inlets with basement rocks locally exposed. Grain-size distribution shows a fining tendency toward the basin center near the Yoja Island, implying a possible existence of turbidity maximum and relatively rapid settling of fine-grained sediments. The agglutinated foraminiferal taxa are dominant in the inner bay and decrease in abundance toward the mouth of the bay. Species diversities are higher in the outer bay, due to mixing of the offshore faunas with those of the bay. Four groups of benthic foraminiferal assemblages, identified by cluster analysis, represent the bay. Biofacies I and ll with relatively lower diversities are dominated by Ammobaculites exiguus and Ammonia beccarii, suggestive of influx of fresh water. In contrast, biofacies III and IV with relatively higher diversities include increased amounts of calcareous genus Elphidium and Quinquelocuzina, accounting for strong influence of sea water from the offshore. The fluvial discharge in summer floods appears to develop a bay-wide, clockwise lateral circulation in Yoja Bay, a typical of well-mixed estuaries. Accordingly, the foraminiferal assemblages of the surface sediments well show a sign of this circulation. The dominant inflow of the offshore water into the western part of the bay has resulted in more extensive muddy tidal flats compared to the eastern narrower counterpart.

  • PDF

The Formation of Hypoxia Sediment and Benthic Foraminiferal Change in Gamak Bay, Southern Coast of Korea (가막만의 빈산소 퇴적층 형성과 저서성 유공충 군집변화 연구)

  • Lee, Yeon-Gyu;Jeong, Da-Un;Kang, So-Ra;Kim, Yong-Wan;Kim, Shin;Jung, Eun-Ho;Lee, Jung-Sick
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.53-64
    • /
    • 2012
  • In order to understand the relationship between the formation of hypoxia sediment by eutrophication and changes in benthic foraminiferal assemblage, micropaleontological and geochemical analyses were carried out on one sediment box core (K-1) recovered in the northern Gamak Bay, which is one of the aquacultural areas in the South Sea of Korea. In this analysis, the PON content in the sediment rapidly increased, while the C/N ratio and the C/S ratio decreased since 1977. These results indicate that eutrophication commenced in 1977 in the northern Gamak Bay, and consequently, the hypoxia sediment is 20 cm thick. Ammonia beccarii-Buccella frigida assemblage occurs before the formation of hypoxia sediment. Trochammina hadai-Buccella frigida assemblage appeared in the transitional period toward hypoxia and Trochammina hadai assemblage with a low abundance and diversity is observed in the hypoxia sediment. The agglutinated species T. hadai is regarded as a bio-indicator (opportunistic species) of the organic pollution in northern Gamak Bay.

Heavy Metal Concentrations of Marine Surface Sediments and Benthic Foraminifera in Southern and Southwestern Coastal Areas of Korea (국내 남해 및 남서해안지역 해양퇴적물과 저서성 유공충 골격내 중금속함량)

  • Kim, Kyoung-Woong;Yun, Hye Su;Yi, Song Suk;Jung, Kyu-Kui
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.223-230
    • /
    • 1997
  • The skeletal chemistry of calcareous microfossils may contribute to the classification of various biological processes and be used as an environmental indicator for future pollution. In order to examine the degree of heavy metal pollutions in marine environments, samples of sediment and benthonic foraminifera were taken from 5 study areas from 3 different stations in coastal offshore regions of Korea. After sieving, cleaning and acid digestion, sample were analyzed for heavy metals by ICP-MS, ICP-AES and AAS. Concentrations of Cd, Cu, Pb and Zn in most of marine sediments from 5 study areas are not higher than those in sediments from unpolluted marine environment in the U.K.. However, pollution indices are up to 0.96~0.99 in the Gwangyang and Yulchon areas which are classified as the special control distric along the coast for pollution. The pollution indices decrease in order of Yulchon > Gwangyang > Mokpo > Gamak = Yoja > Yonggwang areas. Concentrations of Mg, Pb, Sr and Zn in Ammonia beccarii Pseudorotalia gaimardii, Quinqueloculina lamarckiana are reduced after pre-treatment of samples. From the result of bioconcentration index, Mg is easily accumulated in microfossils and Quinqueloculina lamarckiana may be used as the best indicator for future pollution.

  • PDF