• Title/Summary/Keyword: Ammonia/water

Search Result 953, Processing Time 0.024 seconds

Measurement of Single Phase and Condensation Heat Transfer Coefficients of Ammonia in a Horizontal Tube (암모니아의 수평관내 단상 및 응축 열전달계수의 측정)

  • 백영진;장영수;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.561-569
    • /
    • 2000
  • Single phase and condensation heat transfer characteristics of ammonia in a horizontal tube have been investigated experimentally The horizontal test section is composed of smooth SUS316 tube for refrigerant flow, surrounding annulus for water flow, and temperature and Pressure measuring sensors. For single phase test, subcooled ammonia mass flux was varied from 320 to 501 kg/mrs and temperature was varied from 18 to $47^{\circ}C$. For condensation test, mass flux and saturation temperature were varied from 86 to 128 kg/$m^2$s and 34 to $47^{\circ}C$, respectively. The equations of Gnielinski Soliman et al., Traviss et at., Cavallini and Zecchin, Shah, Chen et al., Tandon et al., and Chilli and Anand were compared with the experimental data. New correlations are proposed based on the experimental results and the absolute mean deviation of the experimental data becomes 1.0% for single phase test and 4.9% for condensation test.

  • PDF

Water Treatment Process for Removal of Free Ammonia in Bank Filtrated Water (암모니아성 질소제거를 위한 강변여과수에서의 수처리 공정)

  • Choo Tae-Ho;Lee Jung-Suk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.123-128
    • /
    • 2005
  • Buk-myeon area in Changwon is located near Nakdong river and not short of quantity of river but the water quality and quantity is changed extremely by seasons, and Fe, Mn, Cu are found at the base rock underground water. Therefore, bank filtrated water developing is settled. At this research, Pilot-Plant is built to find out Fe and Mn are detected and eliminated by biological process and the ammonia is exceeded the drinking water quality criteria at the bank filtrated water while designing and facilitating the local water supply facilities at Buk-myeon area. Also, check results of the changed treatment process of automatic precipitating filter, which is producing and supplying drinking water, and analyzing the Biological Process Effectiveness by building and running Buk-myeon Water Treatment Facility, which could provide $10,000m^3/day$.

  • PDF

Impact of a Flushing Discharge from an Upstream Dam on the NH3-N Concentrations during Winter Season in Geum River (상류 댐 플러싱 방류가 금강의 겨울철 암모니아성 질소 농도 저감에 미치는 효과분석)

  • Chung, Se Woong;Kim, Yu-kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.609-616
    • /
    • 2005
  • A high ammonia nitrogen ($NH_3-N$) concentration has been recursively observed every winter season in Geum River, which hindered chemical treatment processes at a water treatment plant. A flushing discharge from Daecheong Dam was often considered to dilute $NH_3-N$, but information on the quantitative effect of flushing on the downstream water quality was limited. In this study, the impact of a short-term reservoir flushing on the downstream water quality was investigated through field experiments and unsteady water quality modeling. On November 22, 2003, the reservoir discharge was increased from $30m^3/sec$ to $200m^3/sec$ within 6 hours for the purpose of the experiment. The results showed that flushing flow tends to reduce downstream $NH_3-N$ concentrations considerably, but the effectiveness was limited by flushing amount and time. An unsteady river water quality model was applied to simulate the changes of nitrogen concentrations in response to reservoir flushing. The model showed very good performance in predicting the travel time of flushing flow and the effect of flushing discharge on the reduction of downstream $NH_3-N$ concentrations at Maepo and Geumnam site, but a significant discrepancy was observed at Gongju site.

Study on Ammonia Emission Characteristic of Pig Slurry (양돈 슬러리의 암모니아 발생 특성에 관한 연구)

  • Lee S.H.;Yun N.K.;Lee K.W.;Lee I.B.;Kim T.I.;Chang J.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Ammonia emission from swine production process originates from three major sources: manure storage facility, swine housing, and land application of manure. Most of the ammonia gas that are emitted from swine production operations is the by-product of aerobic or anaerobic decomposition of swine waste by microorganism. Knowing the ammonia emission rate is necessary to understand how management practices or alternative manure handling process could reduce impacts of this emission on the environment and neighbors. Ammonia gas emission from pig slurry is very difficult to predict because it is affected by many factors including wind speed of slurry surface, temperature or pH of the swine slurry, sort breed differences and classes, and diets. This study was carried out to effects of pH and temperature on ammonia gas emission from growing-finishing pig slurry. Treated far slurry in this study were pH and temperature. Results showed that pH of slurry variable changes 5, 6, 7, 8 upon an addition of NaOH and $HNO_3$, respectively. The temperature of the slurry which was contained in a water bath maintained at increasing levels ranging from 10 to $35^{\circ}C$. Ammonia emission rate of influenced pH and temperature such that the increase in pH or temperature resulted to an increase in ammonia emission. The ammonia gas was not detected at pH 5 and 6. Moreover, at a slurry of pH 8, the ammonia ranged from 28 to 60ppm and 8-29 ppm at slurry pH of 7 while temperature was 13 to $33^{\circ}C$. When slurry pH was>6, the ammonia emission was significantly increased according to rise in temperature in contrast to acid treatment of the pH. There was also a significantly increase in ammonia emission relative to slurry pH of 7 to 8. The above findings showed that to effectively reduce ammonia emission from slurry of growing-finishing pigs, the pH and temperature should be maintained a low levels.

  • PDF

Ammonia removal rate on ammonia loading rates in seawater filtering system using rotating biological contactor (RBC) (회전원판을 이용한 해수 순환여과 시스템에서 암모니아 부하율에 따른 암모니아 제거율)

  • SON Maeng Hyun;JEON Im Gi;CHO Kee Chae;KIM Kang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2000
  • A series of experiment was conducted to investigate the relationship between ammoia removal rate and ammonia loading rates in seawater filtering system using rotating biological contactor (RBC). In this experiment, RBC system was consisted of rotating polyvinyl film disks, which provided $12 m^2$ of total effective surface area in $0.075 m^3$ of volume. $NH_4Cl$ was added by $10{\~}150 g$ as a ammonia nitrogen source to determine ammonia removal rate in RBC system. Relationship between time required for ammonia removal (y: hour) and nitrogen inputted ($x: NH_4-N mg/l$) in RBC system was as followed: $y=3.51+7.76 lnx (r^2=0.936)$. At ammonia concentration $2 mg/l$, it took 10 hour for removal of ammonia in the RBC system. However, at ammonia concentration of $5 and 16.5 mg/l$, it took 16 and 27 hours, respectively. There was a decreasing tencency of an increasing ammonia in the rearing water. Finally, the ammonia removal rate in the RBC system increased with the rise of total ammonia concentration up to $16.5 mg/l$.

  • PDF

Selective Oxidation of Hydrogen Sulfide Containing Ammonia and Water Using Fe2O3/SiO2 Catalyst (Fe2O3/SiO2 촉매 상에서 물과 암모니아가 함께 존재하는 황화수소의 선택적 산화 반응)

  • Kim, Moon-Il;Lee, Gu-Hwa;Chun, Sung-Woo;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.398-402
    • /
    • 2012
  • The catalytic performance of some metal oxides in the vapor phase selective oxidation of $H_2S$ in the stream containing ammonia and water was investigated. Among the catalysts tested $Fe_2O_3/SiO_2$ was the most promising catalyst for practical application. It showed higher than 90% $H_2S$ conversion and very small amount of $SO_2$ emission over a temperature range of $240{\sim}280^{\circ}C$. The effects of reaction temperature, $O_2/H_2S$ ratio, amount of ammonia and water vapor on the catalytic activity of $Fe_2O_3/SiO_2$ were discussed to better understand the reaction mechanism. The $H_2S$ conversion showed a maximum at $260^{\circ}C$ and it decreased with increasing temperature over $280^{\circ}C$. With an increase of $O_2/H_2S$ ratio from 0.5 to 4, the conversion was slightly increased, but the selectivity to elemental sulfur was remarkably decreased. The increase of ammonia amount favored the conversion and the selectivity to elemental sulfur with a decrease in $SO_2$ production. The presence of water vapor decreased both the activity and the selectivity to sulfur, but increased the ATS selectivity.

Removal of Ammonia-N by Immobilized Nitrifier Consortium (고정화된 질화 세균군에 의한 암모니아성 질소 제거)

  • 서근학;김병진;조문철;조진구;김용하;김성구
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.238-243
    • /
    • 1998
  • Nitrifier consortium immobilized in Ca and Ba-alginate beads were packed into two bioreactors and the performances of bioreactors were evaluated for the removal of ammonia nitrogen from synthetic aquaculture water. The total ammonia nitrogen (TAN) concentration of the influent was continually kept about 2g TAN/㎥. At the HRT of 0.6hr, ammonia nitrogen removal rate of two bioreactors were about 52.6 and 51.0g TAN/$\textrm{m}^3$/day, respectively. At the respect of ammonia nitrogen removal, two bioreactor showed the similar abilities. The second trial with nitrifier consortium immobilized in Ca-alginate bead was carried out to evaluate the ammonia nitrogen removal rate for 35 days. The highest ammonia nitrogen removal rate was 82g TAN/$\textrm{m}^3$ when HRT was about 0.3hr.

  • PDF

Nitrification Performance of a Moving Bed Bioreactor (MBBR) at Different Ammonia and Hydraulic Air-Loading Rates under Seawater Conditions (해수 조건에서 총암모니아성 질소 부하량과 수리학적 공기 부하량에 따른 유동상 여과조의 질산화 성능 평가)

  • Jaegeon Lee;Younghun Lee;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.870-877
    • /
    • 2023
  • The purpose of this study was to assess the efficiency of nitrification based on ammonia loading rates and hydraulic air-loading rates in a moving bed bioreactor (MBBR) under seawater conditions. The goal was to provide foundational data for the design of these bio reactors. At an ammonia loading rate of 0.2 g TAN·m-2 surface area·day-1, the influent TAN concentration was determined to be 1.76±0.33 mg·L-1, which is below the safe concentration for fish survival (2 mg·L-1). Considering operational aspects, the optimal ammonia-loading rate was derived. Subsequently, experimental results for nitrification efficiency at the optimal ammonia-loading rate revealed that the optimum hydraulic air-loading rate was 1.8 L·air·m-2 surface area·min-1. This condition resulted in the lowest concentrations of TAN and NO2-N in the influent water, thus establishing the optimal hydraulic air-loading rate. A regression equation was derived for the ammonia-removal rate (Y) based on the ammonia-loading rate (x) and expressed as a 0.5-order equation (Y=ax0.5+b). Specifically, for TAN concentrations of 0-6 mg·L-1, the regression equation Y=0.1683x0.5-0.13628, was established.

Determination of Ammonia Nitrogen by Color Saturation Measurement System (채도측정시스템을 이용한 암모니아성 질소의 정량방법)

  • Lee, Hyeong-Choon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.136-141
    • /
    • 2012
  • Objectives: The objective of this study was to investigate whether the ammonia nitrogen concentration of aqueous samples such as drinking water can be determined by measuring the saturation of the samples colored by indophenol method. Methods: A color saturation measurement system was constructed by connecting a notebook computer to an image acquisition device composed of a PC camera and a light source, and was then used to measure the saturation of samples colored by blue indophenol complex. Results: Between two available light sources, a fluorescent lamp was selected due to its demonstrating better linearity between color saturation and ammonia nitrogen concentration. Prediction by quadratic regression was more accurate than by linear regression, and prediction by quadratic regression in the concentration range of 0.1-1.0 $mg/l$ was more accurate than in the concentration range of 0.0-1.0 $mg/l$. Regression-based predictions over 0.25 $mg/l$, 0.55 $mg/l$ and 0.75 $mg/l$ concentrations were implemented both by spectrophotometric method and by measuring color saturation. In the case of 0.25 $mg/l$, the predicted concentration by spectrophotometric method was $0.256{\pm}0.0076\;mg/l$ and the predicted concentration by measuring color saturation was $0.246{\pm}0.0086\;mg/l$ (p=0.051). In the case of 0.55 $mg/l$, they were $0.561{\pm}0.0068\;mg/l$ and $0.564{\pm}0.0166\;mg/l$ (p=0.660). In the case of 0.75 $mg/l$, they were $0.755{\pm}0.0139\;mg/l$ and $0.762{\pm}0.0088\;mg/l$ (p=0.215). Conclusions: There were no statistically significant differences (p>0.05) between the data from the two methods in all three of the concentrations. Therefore, the color saturation measurement method proposed in this paper may be considered applicable for determining the ammonia nitrogen concentration of aqueous samples such as drinking water.

Elimination capacities of toluene and ammonia in the bio-filter system depending on type of media (담체 종류에 따른 바이오필터의 톨루엔과 암모니아 분해능 평가)

  • Kim, Sunjin;Kim, TaeHyeong;Hwang, SunJin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.797-805
    • /
    • 2012
  • Contribution of immobilized media with bacteria to the odor removal was evaluated in a lab scale bio-filter compared to that with sponge or ceramic media without the immobilized bacteria. Candida tropicalis for volatile organic compounds and ammonium oxidizing bacteria (AOB) for inorganic compounds were used as seeds in lab-scale bio-reactors. Three different type of media in the bio-reactors that immobilized bioreactor (IBR), sponge bioreactor (SBR), and ceramic bioreactor (CBR) were examined, respectively. An empty bed contact time (EBCT) of the bio-filters was fixed as 60 seconds, and the inlet concentration of toluene was changed from 20 ppm to 200 ppm to observe the removal efficiency depending on the concentrations. As a result, the maximum elimination capacities of IBR, SBR, and CBR were 166 $g/m^3/hr$, 138 $g/m^3/hr$, and 138 $g/m^3/hr$, respectively. In addition, toluene as an organic compound and ammonia as an inorganic compound were applied together with different inlet concentrations varied from 80 ppm to 250 ppm of toluene and from 2.5 ppm to 40 ppm of ammonia. The toluene maximum elimination capacities in IBR, SBR, and CBR were 97.4 $g/m^3/hr$, 59.5 $g/m^3/hr$, and 81.9 $g/m^3/hr$, respectively. The ammonia maximum elimination capacities were reached as 7.2 $g/m^3/hr$ in IBR, 6.6 $g/m^3/hr$ in SBR, and 7.0 $g/m^3/hr$ in CBR.