• 제목/요약/키워드: Amino acid sequence

검색결과 1,693건 처리시간 0.028초

Cloning and Characterization of a Rice cDNA Encoding Glutamate Decarboxylase

  • Oh, Suk-Heung;Choi, Won-Gyu;Lee, In-Tae;Yun, Song-Joong
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.595-601
    • /
    • 2005
  • In this study, we have isolated a rice (Oryza sativa L.) glutamate decarboxylase (RicGAD) clone from a root cDNA library, using a partial Arabidopsis thaliana GAD gene as a probe. The rice root cDNA library was constructed with mRNA, which had been derived from the roots of rice seedlings subjected to phosphorus deprivation. Nucleotide sequence analysis indicated that the RicGAD clone was 1,712 bp long, and harbors a complete open reading frame of 505 amino acids. The 505 amino acid sequence deduced from this RicGAD clone exhibited 67.7% and 61.9% identity with OsGAD1 (AB056060) and OsGAD2 (AB056061) in the database, respectively. The 505 amino acid sequence also exhibited 62.9, 64.1, and 64.2% identity to Arabidopsis GAD (U9937), Nicotiana tabacum GAD (AF020425), and Petunia hybrida GAD (L16797), respectively. The RicGAD was found to possess a highly conserved tryptophan residue, but lacks the lysine cluster at the C-proximal position, as well as other stretches of positively charged residues. The GAD sequence was expressed heterologously using the high copy number plasmid, pVUCH. Our activation analysis revealed that the maximal activation of the RicGAD occurred in the presence of both $Ca^{2+}$ and calmodulin. The GAD-encoded 56~58 kDa protein was identified via Western blot analysis, using an anti-GAD monoclonal antibody. The results of our RT-PCR analyses revealed that RicGAD is expressed predominantly in rice roots obtained from rice seedlings grown under phosphorus deprivation conditions, and in non-germinated brown rice, which is known to have a limited phosphorus bioavailability. These results indicate that RicGAD is a $Ca^{2+}$/calmodulin-dependent enzyme, and that RicGAD is expressed primarily under phosphate deprivation conditions.

Genomic Organization of Penicillium chrysogenum chs4, a Class Ⅲ Chitin Synthase Gene

  • 박윤동;이명숙;남경준;박범찬;배경숙;박희문
    • 미생물학회지
    • /
    • 제38권4호
    • /
    • pp.230-230
    • /
    • 2002
  • Class Ⅲ chitin synthases in filamentous fungi are important for hyphal growth and differentiation of several filamentous fungi. A genomic clone containing the full gene encoding Chs4, a class Ⅲ chitin synthase in Penicillium chrysogenum, was cloned by PCR screening and colony hybridization from the genomic library. Nucleotide sequence analysis and transcript mapping of chs4 revealed an open reading frame (ORF) that consisted of 5 exons and 4 introns and encoded a putative protein of 915 amino acids. Nucleotide sequence analysis of the 5′flanking region of the ORF revealed a potential TATA box and several binding sites for transcription activators. The putative transcription initiation site at -716 position was identified by primer extension and the expression of the chs4 during the vegetative growth was confirmed by Northern blot analysis. Amino acid sequence analysis of the Chs4 revealed at least 5 transmembrane helices and several sites for past-transnational modifications. Comparison of the amino acid sequence of Chs4 with those of other fungi showed a close relationship between P chrysogenum and genus Aspergillus.

Sphingomonas chungbukensis DJ77 균주에서 2- hydroxychromene-2-carboxylate isomerase를 암호화하는 phnS 유전자의 염기서열과 상동성 분석 (Sequence and phylogenetic analysis of the phnS gene encoding 2-hydroxychromene-2-carboxylate isomerase in Sphingomonas chungbukensis DJ77)

  • 엄현주;강민희;김영필;김성재;김영창
    • 미생물학회지
    • /
    • 제39권3호
    • /
    • pp.123-127
    • /
    • 2003
  • Sphingomonas chungbuken교 DJ77은 phenanthrene을 단일 탄소원과 에너지원으로 이용하여 살아갈 수 있다. pUPXS는 phenanthrene과 naphthalene분해를 위해 필요한 2-hydroxychromene-2-carboxylate (HCCA) isomerase를 암호화하는phnS유전자를 포함한다. 본 논문에서는 phnS유전자가 포함된 3271 bp의 염기 서열을 결정하였다. 이 유전자는 ATG를 개시코돈으로 사용하며, TAA를 종결 코돈으로 사용하고 있다. 또한 개시 코돈의 5 bp앞쪽으로 GGAA라는 ribosomal binding site를 갖는다. phnS는 총 594 bP의 open reading frame을 포함하며,158개의 아미노산으로 구성되었다. phns를 구성하는 아미노산서열은 S. aromaticivorans F199의 유사서열과 87%의 유사성을 나타냈다. phns 유전자는 biphenyl dioxygenase를 구성하는 2,3-dihydroxybiphenyl 1,2-dioxygenase를 암호화하는 phnQ와 ferredoxin를 암호화 하는 phnR과 같은 operon을 이루며, 이들 유전자의 downstream에 위치하고 있다.

A New Esterase, Belonging to Hormone-Sensitive Lipase Family, Cloned from Rheinheimera sp. Isolated from Industrial Effluent

  • Virk, Antar Puneet;Sharma, Prince;Capalash, Neena
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.667-674
    • /
    • 2011
  • The gene for esterase (rEst1) was isolated from a new species of genus Rheinheimera by functional screening of E. coli cells transformed with the pSMART/HaeIII genomic library. E. coli cells harboring the esterase gene insert could grow and produce clear halo zones on tributyrin agar. The rEst1 ORF consisted of 1,029 bp, corresponding to 342 amino acid residues with a molecular mass of 37 kDa. The signal P program 3.0 revealed the presence of a signal peptide of 25 amino acids. Esterase activity, however, was associated with a homotrimeric form of molecular mass 95 kDa and not with the monomeric form. The deduced amino acid sequence showed only 54% sequence identity with the closest lipase from Cellvibrio japonicus strain Ueda 107. Conserved domain search and multiple sequence alignment revealed the presence of an esterase/ lipase conserved domain consisting of a GXSXG motif, HGGG motif (oxyanion hole) and HGF motif, typical of the class IV hormone sensitive lipase family. On the basis of the sequence comparison with known esterases/ lipases, REst1 represents a new esterase belonging to the class IV family. The purified enzyme worked optimally at $50^{\circ}C$ and pH 8, utilized pNP esters of short chain lengths, and showed best catalytic activity with p-nitrophenyl butyrate ($C_4$), indicating that it was an esterase. The enzyme was completely inhibited by PMSF and DEPC and showed moderate organotolerance.

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • Park, Dong-Woo;Kim, Youngsoo;Lee, Sang-Mahn;Ka, Jong-Ok;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.275-280
    • /
    • 2000
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as rarbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

  • PDF

Molecular cloning and expression of black rockfish Sebastes schlegelii p47-phox (neutrophil cytosolic factor 1)

  • Kim, Ki-Hyuk;Baeck, Gun-Wook;Kim, Mu-Chan;Park, Chan-Il
    • 한국어병학회지
    • /
    • 제22권2호
    • /
    • pp.137-146
    • /
    • 2009
  • The black rockfish Sebastes schlegelii neutrophil cytosolic factor components p47 phox (phagocyte oxidase) cDNA was cloned. The sequence of the cDNA showed that rockfish p47 phox cDNA consisted of 1,952 bp contained open reading frame encoding predicted polypeptide of 420 amino acids. Additionally analysis of the p47 phox amino acid sequence showed two potential SH3 domains. The functional domains are highly conserved in many animals, though the sequence of the components of the black rockfish showed low homology with that of mammals. The deduced amino acid sequence of the black rockfish p47 phox was similar to those of the carp (60.4%), zebrafish (59,2%), rainbow trout (68.5%), xenopus (55.2%), mouse (54.2%), rabbit (54.5%), rat (53.7%), and chicken (50.9%). The expression of the rockfish p47 phox molecule was induced in peripheral blood leukocytes (PBLs) from 1 to 12 h following LPS stimulation, with a peak at 6 h after the stimulation, and which increased at 1, 3, and 12 h after treated with Poly I:C compared with the control. The rockfish p47 phox gene was expressed in various tissues of healthy fish. The level of p47 phox expression was high in the PBLs, kidney and spleen.

Identification and molecular characterization of a rabbit hemorrhagic disease virus variant (KV0801) isolated in Korea

  • Yang, Dong-Kun;Kim, Byoung-Han;Lee, Kyung-Woo;Kim, Ji-Yeon;Kim, Hee-Jin;Choi, Sung-Suk;Chun, Ji-Eun;Son, Seong-Wan
    • 대한수의학회지
    • /
    • 제49권3호
    • /
    • pp.207-213
    • /
    • 2009
  • Rabbit hemorrhagic disease (RHD) is caused by RHD virus (RHDV) and is one of the most fatal diseases of rabbits. Acute death of rabbits occurred in a farm located in the Gyeonggi province of South Korea. The virus was isolated and confirmed as RHDV based on reverse transcription polymerase chain reaction and hemagglutination assay (HA), and the isolate was designated as KV0801. The nucleotide sequence of the complete VP60 gene of KV0801 was determined and the corresponding amino acid sequence was deduced. Molecular analysis showed that the KV0801 isolate can be classified as a pandemic antigenic variant strain, RHDVa. The VP60 nucleotide sequence and deduced amino acid homology between KV0801 and other Korean isolate, RHF89, which was isolated in 1988, were 92.1 and 94.3%, respectively. The pathogenicity of the KV0801 isolate at an HA titer ranging from 16,384 to 0.16 HA units was evaluated in five-month-old SFP rabbits. The rabbits inoculated with KV0801 isolate containing more than 1.63 HA units died within six days of inoculation. These results suggest that a highly pathogenic RHDVa is circulating in the rabbit populations of Korea.

Molecular Cloning of a LIM Protein cDNA from the Mulberry Longicorn Beetle, Apriona germari

  • Gui, Zhongzheng;Wei, Yadong;Yoon, Hyung Joo;Kim, Iksoo;Guo, Xijie;Jin, Byung Rae;Sohn, Hung Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권1호
    • /
    • pp.149-153
    • /
    • 2004
  • Here we report the molecular cloning of a LIM protein cDNA of the CRP (cysteine-rich protein) family from the mulberry longicorn beetle, Apriona, geramri. The A. germari LIM protein cDNA contains an open reading frame of 276 bp encoding 92 amino acid residues with a calculated molecular weight of approximately 10 kDa. The A. germari LIM protein contains the cysteine-rich consensus sequence of LIM domain and the glycine-rich consensus sequence observed in cysteine-rich protein family 1 (CRP1). The potential nuclear targeting signal is retained. The deduced amino acid sequence of the A. germari LIM protein cDNA showed 81 % identity to both Bombyx mori muscle LIM protein (Mlp) and Drosophila melanogaster Mlp60A and 77% to Epiblema scudderiana Mlp. Northern blot analysis showed that A. germari LIM protein is highly expressed in epidermis and muscle, and less strongly in midgut, but not in the fat body.

Sequence Homologies of GTP-binding Domains of Rab and Rho between Plants and Yeast/Animals Suggest Structural and Functional Similarities

  • Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.85-92
    • /
    • 1996
  • Small GTP-binding proteins are divided into three major group: Ras, Rho and Ypt/Rab. They have the conserved regions designed G1 to G5 that are critical in GDP/GTP exchange, GTP-induced conformational change and GTP hydrolysis. We isolated and characterized genomic DNA or cDNAfragments encoding G1 to G3 domains of small GTP-binding protein Rab and Rho from several plant species using two different PCR-based cloning strategies. Seven rab DNA fragments were isolated from 4 different plants, mung-bean, tobacco, rice and pepper using two degenerate primers corresponding to the GTP-binding domain G1 and G3 in small GTP-binding proteins. The amino acid sequences among these rab DNA fragments and other known small GTP-binding proteins shows that they belong to the Ypt/Rab family. Six rho DNA fragments were isolated from 5 different plants, mung-bean, rice, Arabidopsis, Allium and Gonyaulax using the nested PCR method that involves four degenerate primers corresponding to the GTP-binding domain G1, G3 and G4. The rho DNA fragments cloned show more than 90% homology to each other. Sequence comparison between plant and other known Rho family genes suggests that they are closely related (67 to 82% amino acid identity). Sequence analysis and southern blot analysis of rab and rho in mung-bean suggest than thses genes are encoded by multigene family in mung-bean.

  • PDF

cDNA Cloning and mRNA Expression of A Cuticle Protein Gene Homo­logue from Protaetia brevitarsis

  • Kim Iksoo;Choi Yong Soo;Lee Eun Mee;Kim Mi Ae;Yun Enn Young;Ahn Mi Young;Jin Bynng Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제11권1호
    • /
    • pp.67-70
    • /
    • 2005
  • A cuticle protein gene, PbLCP12.1, from the white­spotted flower chafer, Protaetia brevitarsis, was isolated and characterized. The gene contains an ORF of 336 nucleotides capable of encoding a 113 amino acid polypeptide with a predicted molecular mass of 12,138 Da and pI of 4.15. The PbLCP12.1 protein contained a type-specific consensus sequence identifiable in other insect cuticle proteins. The deduced amino acid sequence of the PbLCP12.1 cDNA is most similar to Bombyx mori cuticle protein BmLCP18 (37$\%$ protein sequence identity). Northern blot analysis revealed that PbLCP12.1 showed the epidermis-specific expression.