• Title/Summary/Keyword: Amino Modified Siloxane

Search Result 5, Processing Time 0.02 seconds

Effect of Amino Modified Siloxane on the Properties of Epoxy Composites for MEMS Adhesives (MEMS 접착제용 에폭시 복합재의 아미노 변성 실록산 첨가에 의한 효과)

  • Lee, Donghyun;Yu, Kihwan;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.203-207
    • /
    • 2009
  • In the NCAs(non-conductive adhesive) for adhesion of Micro Electro Mechanical System(MEMS), there are some problems such as delamination and cracking, because of the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Addition of inorganic particle or flexibilizer have been performed to solve those problems. In this study, to improve the flexibility of epoxy adhesive, epoxy/siloxane composites were prepared by adding 1, 3, or 5 phr of amino modified siloxane(AMS). Glass transition temperatures(Tg), moduli and CTE of those composites were measured to confirm effects of siloxane on thermal/mechanical properties of siloxane/epoxy-composites. Tg of AMS/epoxy-composites decreased from $134^{\circ}C$ to $122^{\circ}C$ with increasing AMS contents and moduli decreased from 2,425 MPa to 2,143 MPa with increasing AMS contents. But CTE of AMS/epoxy-composites increased from $67ppm/^{\circ}C$ to $71ppm/^{\circ}C$ with increasing AMS contents. In short, the addition of siloxane is effective for enhancing the flexibility of epoxy but leads to the decrease of Tg.

Synthesis and Chnracterization of Organophilic Montmorillonites Modified with Alkyl Siloxane Amino 01igomers (알킬실록산 아민 올리고머 구조를 함유한 친유성 몬모릴로나이트의 제조 및 특성평가)

  • 김효주;김용석;원종찬;이미혜;최길영
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2003
  • A series of organophilic montmorillonites (MMTs) modified with various alkyl siloxane amino oligomer groups have been synthesized and their properties were investigated. New organophilic MMTs containing siloxane amino oligomers with alkyl group instead of conventional alkyl amines were synthesized to improve thermal stability as well as gallery spacing. The organophilic MMTs were synthesized from MMT by utilizing the siloxane amino oligomers with various alkyl groups in the water/dioxane solution, which was performed without aq. HCl. Thermal decomposition temperature, gallery spacing, and hydrophobicity of synthesized organophilic MMTs were investigated. X-ray diffraction and TEM experiment results on new organophilic MMTs demonstrated that introduction of siloxane amine oligomers increased d-spacing between silicate layers. The decomposition temperatures of new organophilic MMTs measured by TGA was remarkably improved above 200℃ as compared with those of conventional alkyl substituted organophilic MMTs.

Characterization of Emulsion Properties for Modified Amino Polysiloxanes (아미노 변성 폴리실록산의 유화 특성)

  • 하윤식;서무룡;이정경;박경일;장윤호
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Silicone oil has organic and inorganic properties, and its skeleton is polysiloxane bonding that silicon is bonded hydrogen or organic group. Silicone compounds are very smooth and lubricant properties by low surface tension, low temperature dependence, and nonadhesive properties. Because of these properties, silicone compounds are used as many parts of chemicals, softener, smooth and libricant agents, water-repellent agent, and defoaming agent, etc. Emulsion was prepared with the inversion emulsification method which adopted the agent-in-oil method dissolving the polyoxyethylene(7) tridecyl ether(HLB 12.2) into methoxy terminated poly(dimethyl-co-methyl amino) siloxane and hydroxy terminated poly(dimethyl-co-methyl amino) siloxane in water. At this time, processed emulsion was almost microemulsion. When ratio of emulsifier increases, emulsion is stable bacuause microemulsion is solubilized by emulsion drop size and zeta-potential are decreased. But, when amount of electrolyte is increase, emulsion became unstable because emulsion drop size is increased.

  • PDF

Effect of Amino Modified Siloxanes with Two Different Molecular Weights on the Properties of Epoxy Composites for Adhesives for Micro Electronics (전자소재 접착제용 에폭시에 두 종의 다른 당량수를 갖는 아미노 변성 실록산이 미치는 영향)

  • Yu, Kihwan;Kim, Daeheum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.104-108
    • /
    • 2011
  • In the non-conductive adhesives (NCAs) for adhesion of micro electro mechanical system (MEMS), there are some problems such as delamination and cracking resulting from the large differences of coefficients of thermal expansion (CTE) between NCAs and substrates. So, the addition of inorganic particles such as silica and nano clay to the CTEs composit have been applied to reduce the CTEs of the adhesives. Additions of the flexibilizers such as siloxanes have also been performed to improve the flexibility of epoxy composite. Amino modified siloxane (AMSs) were used to improve compatibility between epoxy and siloxane. In this study, glass transition temperatures (Tg) and moduli of those composites were measured to confirm the effects of AMS with two different equivalents on thermal/mechanical properties of AMS/epoxy composites. Tg of KF-8010/epoxy composites decreased from 148 to $122^{\circ}C$ and those of X-22-161A/epoxy composites decreased from 148 to $121^{\circ}C$. Moduli of KF-8010/epoxy composites decreased from 2648 to 2143 MPa by adding KF-8010 and moduli of X-22-161A/epoxy composites decreased from 2648 to 2014 MPa. In short, using long Si-O chain AMS leads to a greater decrease in moduli. However, haven't showed significant differences in Tg's.

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.