• Title/Summary/Keyword: Amine curing agent

Search Result 23, Processing Time 0.02 seconds

Influence of Amine Base Dispersing Agent on Properties of Silica Filled Rubber Compounds (아민계 분산제가 실리카 고무배합물의 물성에 미치는 영향)

  • Park, Sung-Soo;Kil, Sang-Gyu;Jang, Byung-Man;Song, Ki-Chan;Kim, Su-Kyung
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.503-511
    • /
    • 2001
  • Present silica dispersing agents are based mainly on fatty acid derivatives of Zn, K and mixture of fatty acid and metallic soaps are used to increase activity. The viscosity of silica filled rubber is lowered by Zn-K soap type silica dispersing agent, thus fluidity of hydrocarbon chains and processibility is improved. Silica dispersing agent should not exert an influence on chracteristics of vulcanization. But scorch and curing time is shortened by Zn-K soap type silica dispersing agent. A newly developed silica dispersing agent, which is a nonmetal type agent, reduced the viscosity and hardness of silica compounding rubber, and the highly increased degree of dispersion of silica is caused by interaction of silica and rubber. Also it did not affect the curing characteristics and scorch stability of silica compounding rubber.

  • PDF

Mechanical properties of epoxy composites reinforced with ammonia-treated graphene oxides

  • Park, Mi-Seon;Lee, Sangmin;Lee, Young-Seak
    • Carbon letters
    • /
    • v.21
    • /
    • pp.1-7
    • /
    • 2017
  • The effects of ammonia-treated graphene oxide (GO) on composites based on epoxy resin were investigated. Ammonia solutions of different concentrations (14-28%) were used to modify GO. Nitrogen functional groups were introduced on the GO surfaces without significant structural changes. The ammonia-treated GO-based epoxy composites exhibited interesting changes in their mechanical properties related to the presence of nitrogen functional groups, particularly amine ($C-NH_2$) groups on the GO surfaces. The highest tensile and impact strength values were 42.1 MPa and 12.3 J/m, respectively, which were observed in an epoxy composite prepared with GO treated with a 28% ammonia solution. This improved tensile strength was 2.2 and 1.3 times higher than those of the neat epoxy and the non-treated GO-based epoxy composite, respectively. The amine groups on the GO ensure its participation in the cross-linking reaction of the epoxy resin under amine curing agent condition and enhance its interfacial bonding with the epoxy resin.

Study on the Thin-walled carbon nanotubes (TWNTs)/Amine epoxy additive composite via supercritical fluid process (초임계 공정을 이용한 Thin-walled carbon nanotubes (TWNTs)/아민계 에폭시 첨가제의 복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.486-491
    • /
    • 2014
  • We have been fabricated Thin-walled carbon nanotubes (TWNTs)/amine epoxy additives composite using Eco-friendly solvent system such as supercritical process and dry mixed process. TWNTs/amine epoxy additives composite has used as a curing agent for urethane based bisphenol A type epoxy resin. The thermo-mechanical property of the epoxy resin cured by TWNTs/amine epoxy additives composite is characterized by dynamic mechanical analysis(DMA) and dispersability of the nanotubes in the epoxy matrix is also confirmed by scanning electron microscope(SEM). As a results, the epoxy resin cured by TWNTs/amine epoxy additives composite with supercritical process shows enhanced dispersability of the TWNTs in the matrix and thermo-mechanical property when compare to dry mixed process.

Mechanical and Thermal Properties of Epoxy/Organically Modified Mica Type Silicate (OMTS) Nanocomposites (에폭시/유기치환된 실리케이트 나노복합체의 기계적 및 열적 성질에 관한 연구)

  • 노진영;김진환
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.691-698
    • /
    • 2001
  • Nanocomposites based on epoxy acid nanoclay were prepared employing organically modified mica type silicate (OMTS), diglycidyl ether of bisphenol A (DGEBA) type epoxy. curing agent (dicyandiamide; DICY), and catalyst (benzyl dimethyl amine; BDMA). Both melt mixing and solution mixing were und for the sample preparation and structural developments with curing reaction were analyzed using X-ray diffractometer (XRD) and small angle X-ray scattering (SAXS). Because of the different curing rate between extra-gallery and intra-gallery reactions of epoxy mixtures, only intercalated structure was observed for the sample prepared by melt mixing while fully exfoliated structure was observed for the sample prepared by solution mixing. Mechanical properties of exfoliated epoxy nanocomposite were investigated using a dynamic mechanical analyzer (DMA). The dynamic storage modulus of the nanocomposite in both glass and rubbery plateau regions were increased with increasing OMTS contents, but glass transition temperatures ($T_g$) remained unchanged. Thermal properties of epoxy nanocomposite were investigated using thermogravimetric (TGA) and limit oxygen index (LOI) methods. Thermal decomposition onset points and LOI values were increased with increasing OMTS contents due to barrier effects of OMTS sheets.

  • PDF

감성물질의 마이크로캡슐화에 의한 감성기능 섬유의 개발(IV) -감온변색 기능섬유-

  • 김문식;박수민
    • Textile Coloration and Finishing
    • /
    • v.9 no.6
    • /
    • pp.79-86
    • /
    • 1997
  • The microcapsule for thermochromism is based on the polymerization reaction between epoxy resin and amine curing agent. The preparation process of microcapsule is based on dissolving or dispersing a hydrophobic core materials[one-dye-black(OBD), bis-phenol A(BPA), cetyl alcohol] in an aqueous solution of gelatin, epoxy resin and isophorondiamine(IPDA) ; the gelatin and IPDA used as a dispersion stabilizer and an hardening agent, respectively. The structures of epoxy resin and microcapsule materials have been analyzed by FT-IR and UV/Vis spectra. The mean diameter and size distribution of microcapsule are 1.46~1.75${\mu}{\textrm}{m}$ and 1.42, respectively. The DSC thermograms of microcapsules indicated 2 kinds of endothermic peaks at 47 and 322$^{\circ}C$. This is possibly corresponding to the melting peak of core material and wall meterial. These microcapsules are applied to the fabric by printing. Complex finished fabric showed a good wear resistance on rubbing test and the print pattern to the cotton fabric showed a reversible thermochromism ; ${\mu}_{max}$ are 580 nm below 4$0^{\circ}C$ and 276.5nm above 4$0^{\circ}C$ in ethanol/water(2/8), respectively.

  • PDF

Activation Energy Measurement of the $^{60}Co$ $\gamma$-ray Irradiated Epoxy Resin ($^{60}Co$ $\gamma$-ray 조사에 따른 에폭시 수지의 활성화 에너지 측정)

  • Lee, Kyoung-Yong;Kim, Ki-Yup;Hwang, In-Ra;Choi, Yong-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.75-79
    • /
    • 2008
  • In this paper, we measured the activation energy of the Bisphenol A type Epoxy resin (DGEBA)-Jeffamine system according to an irradiation. We put the mixed solutions to the silicon mold after mixing both DGEBA(216g) and Jeffamine(93.9g), curing agent of amine system. The mixed solutions were cured in the atmosphere during 24hours after finishing the first curing during 4hours in the vacuum oven under $80^{\circ}C$. The mixed solutions were cured in the atmosphere during 24hours after finishing the second curing during 12hours in the vacuum oven under $60^{\circ}C$ again. Prepared samples were irradiated to the dose rate of 8kGy/hr with 500kGy, 700kGy, 1000kGy, 1500kGy, 2000kGy, 2500kGy. Experimental results indicated activation energy of the samples reduced as the irradiation dose increased because of the peroxides of the Epoxy created by the oxidation and the radiation.

  • PDF

Cure Kinetics and Dynamic Mechanical Properties of an Epoxy/Polyoxypropylene Diamine System (에폭시/폴리옥시프로필렌 디아민계의 경화 반응속도 및 동역학 특성 분석)

  • Huang, Guang-Chun;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2011
  • The cure kinetics of a bisphenol A epoxy resin and polyoxypropylene diamine curing agent system are investigated in both dynamic and isothermal conditions by differential scanning calorimetry (DSC). In dynamic experiments, the shift of exothermic peaks obtained at different heating rates is used to obtain activation energy of overall cure reaction based on the methods of Ozawa and Kissinger. Isothermal DSC data at different temperatures are fitted to an autocatalytic Kamal kinetic model. The kinetic model is in a good agreement with the experimental data in the initial stage of cure. A diffusion effect is incorporated to describe the later stage of cure, predicting the cure kinetics over the whole range of curing process. Also, dynamic mechanical analysis is performed to evaluate the storage modulus and average molecular weight between crosslinkages.

Microstructures and Thermal Properties of Polycaprolactone/Epoxy Resin/SiO2 Hybrids

  • He, Lihua;Liu, Pinggui;Ding, Heyan
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • A series of organic-inorganic hybrids, PCL/EP/$SiO_2$, involving epoxy resin and triethoxysilane-terminated polycaprolactone elastomer (PCL-TESi) were prepared via polymerization of diglycidyl ether of bisphenol A (DGEBA) with amine curing agent KB-2 and sol-gel process of PCL-TESi. The curing reactions were started from the initially homogeneous mixture of DGEBA, KB-2 and the PCL-TESi. The organicinorganic hybrids containing up to 4.95% (wt) of $SiO_2$ were obtained and characterized by FT-IR, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). It was experimentally shown that the swelling property in toluene, morphologies and thermal properties of the resulting hybrids were quite dependent on the contents of $SiO_2$. The crosslink network density decreases with increasing of the PCL-TESi. And in TEM, the phase separated morphology of these hybrids was found, which resulted from the coagulation of Si-O-Si networks resulting from $-Si(OC_2H_5)_3$ of PCL-TESi self-curing by hydrolytic silanol condensation, with the advancement of the curing reaction in the modified epoxy resin systems. Meanwhile, the change of the $SiO_2$ content made the morphologies changed from aggregated particles of Si-O-Si in the hybrid to nanocluster of interconnected Si-O-Si particles, then to aggregated Si-O-Si dispersing in the continuous cured epoxy phase again, and last to co-continuous interpenetrating network. The glass transition behavior of the hybrid material was cooperative motion of large chain segments, which were hindered by the inorganic Si-O-Si network. And in TG analysis, the characteristic temperature at 5% of weight loss was evidently increased from $120.5^{\circ}C$ of pure cured epoxy to $277.6^{\circ}C$ of 3.84% (wt) of $SiO_2$ modified epoxy due to the existence of Si-O-Si when PCL-TESi was added in the hybrid.

  • PDF

A Study on the High Performance Waterborne Epoxy Resin for Surface Coating (표면 코팅을 위한 고성능 수용성 에폭시 수지에 관한 연구)

  • Kim, Yong-Ho;Lee, Kwang-Won;Kim, Young-Jae
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.89-97
    • /
    • 2000
  • Waterborne epoxy resins have been developed in order to meet environmental regulations for reduction of the emission of organic solvents from coating industry As each generation has filled a performance gap in the previous technology, new waterborne epoxy resin has developed. Initially, waterborne epoxy resins were used primarily on masonry, but the subsequent generations have found utility for the protection of metallic substrates as well. Indeed, the third generation systems have been formulated to produce the high performance industrial maintenance primers which possess the desirable combination of good corrosion resistance and low volatile organic compound levels. This paper outlines the important guidelines for formulating waterborne epoxy primers from waterborne epoxy resin that has recently developed in our company. The importance of using the appropriate resin-curing agent system at the optimized epoxy to amine ratio is stressed.

  • PDF

Individual Reaction Mechanisms and Properties of a DGEBA/DDS Epoxy Resin System (DGEBA/DDS 에폭시수지계의 개별적 반응기구 및 물성)

  • Byung-Gak Min
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.73-76
    • /
    • 1999
  • Near infrared spectroscopy techniques were used to study the cure reactions of epoxy resin system based on diglycidyl ether of bisphenol A(DGEBA) resins cured with 4, 4' diaminodiphenyl sulfone (DDS) hardner. Stoichiometric DGEBA/DDS resin formulation was involved in this study. The infrared absorption spectra of the prepared formulation were obtained on an FTIR spectrometer operating in the region of 11000 to 4000$cm^{-l}$. The chemical group peaks of interest in a DFEBA/DDS spectrum were identified by a comparative study with individual spectra of DGEBA and DDS monomers. Where necessary, special model compounds were used to identify unknown bands, such as the primary amine band at 4535$cm^{-l}$. The absorption bands of interest were integrated to quantify the areas and then converted to molar concentrations. This series of quantitative analyses of the major chemical groups led us to understand not only the reaction mechanism but also the cure kinetics. In this paper, the reaction mechanisms observed in stoichiometric DGEBA/DDS resin formulation and the various properties of the resin system as a function of cure temperature are described.

  • PDF