• Title/Summary/Keyword: Amide

Search Result 695, Processing Time 0.027 seconds

Fluorescence-based Assay System for Endocannabinoid Degradation Enzyme, Fatty Acid Amide Hydrolase

  • Kim, Dae-Woong;Kim, Gun-Joong;Kim, Hae-Jo;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • Endogenous cannabinoids (endocannabinoids) display various pharmacological effects including pain control, anti-inflammation, and neuroprotection. The synthesis and release of endocannabinoids are regulated under both physiological and pathological conditions. The main degrading enzyme of endocannabinoid is fatty acid amide hydrolase (FAAH). Therefore we have developed the fluorescence-based assay system for FAAH. We established stable CosM6 cell lines expressing human FAAH. We also synthesized 2-oxo-2H-chromen-7-yl decanoate (DAEC) as a fluorogenic substrate for FAAH. When crude membrane extracts stably expressing FAAH was incubated with DAEC at $25^{\circ}C$, FAAH reacted specifically to DAEC and catalyzes the hydrolysis of DAEC into decanoic acid and highly fluorescent coumarin. Furthermore, the serin hydrolase inhibitor, phenylmethanesulfonylfluoride, inhibited the coumarin release to the reaction buffer in concentration dependent manner. This assay system is suitable for high-throughput screening since this system has simple experimental procedure and measurement method.

Synthesis of Amide from Thioamide by Treatment of SiO2 or SeO2

  • Jung, Dai-Il;Lee, Jin-A;Lee, Do-Hun;Kwak, Moon-Jung;Lee, Soo-Jin;Park, You-Mi;Park, Soon-Kyu;Kim, Hyun-Sook
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.49-51
    • /
    • 1999
  • Reactions of 2,6-Lutidine with active methyl group anilines in the presence of sulfur gave the desired thioamides 1. Reactions of synthesized thioamides 1 with sulfur and SiO2 or SeO2 gave the corresponding amide 2. We now report conversion of thioamide to amide by using oxidzing inorganic reagant

Syntheses and Surface Active Properties of Amphoteric Surfactant(3);Syntheses of Carboxylated Amides from Imidazoline (양쪽성계면활성제의 유도체합성 및 계면성에 관한 연구(제3보);이미다졸린으로부터 유도된 카르복시화 아미드류의 합성)

  • Ro, Y.C.;Kim, H.S.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 1994
  • Amphoteric surfactants were synthesized by the cyclization of 1-(2-hydroxyethyl)-2-undecyl-2-imidazoline [I] with acrylic acid ethyl ester. Compound [I] was easily hydrolyzed with water, especially in the presence of a alkali, to afford amidoamines. After [I] was hydrolyzed, the reaction mixture was allowed to react with acrylic acid ethyl ester and then soapoinfied. Only sodium salts of N- -(2-carboxyethyl)-N'-(2-hydroxyethyl)aminoethyl]dodecanoyl amide[III] was obtained. However, when the reacton of [I] with acrylic acid ethyl ester was carried out in the presence of water, followed by soapnification, ring cleavage of [I] occurred at 2, 3 position, different from hydrolysis of [I] where the cleavage occurred at 1, 2 position, to give sodium salts of N-[N'-(2-carboxyethyl)aminoethyl]-N-(2-hydroxyethyl)dodecanoyl amide [IV] and N-[N', N'-bis(2-carboxyethyl)aminoethyl]-N(2-hydroxyethyl)dodecanoyl amide [V] as main products.

CO2 Solubilities in Amide-based Brønsted Acidic Ionic Liquids

  • Palgunadi, Jelliarko;Im, Jin-Kyu;Kang, Je-Eun;Kim, Hoon-Sik;Cheong, Min-Serk
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A distinguished class of hydrophobic ionic liquids bearing a Br${\o}$nsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and $\varepsilon$-caprolactam with trifluoroacetic acid and physical absorptions of $CO_2$ in these ionic liquids were demonstrated and evaluated. $CO_2$ solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that $CO_2$ solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility.

Implications of the Periodicity in NMR Chemical Shifts and Temperature Coefficients of Amide Protons in Helical Peptides

  • Suh, Jeong-Yong;Choi, Byong-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.2
    • /
    • pp.127-138
    • /
    • 2004
  • We obtained the chemical shifts of amide protons (NHs) in helical peptides at various temperatures and trifluoroethanol (TFE) concentrations using 2-dimensional NMR spectroscopy. These NH chemical shifts and their temperature dependence exhibited characteristic periodicity of 3-4 residues per cycle along the helix, where downfield shifted NHs showed larger temperature dependence. In an attempt to understand these observations, we focused on hydrogen bonding changes in the peptides and examined the validity of two possible explanations: (1) changes in intermolecular hydrogen bonding caused by differential solvation of backbone carbonyl groups by TFE, and (2) changes in intramolecular hydrogen bonding due to disproportionate variations in the hydrogen bonding within the peptide helix. Interestingly, the slowly exchanging NHs, which were on the hydrophobic side of the helix, showed consistently larger temperature dependences. This could not be explained by the differential solvation assumption, because the slowly exchanging NHs would become more labile if the preceding carbonyl groups were preferentially solvated by TFE. We suggest that the disproportionate changes in intramolecular hydrogen bonding better explain both the temperature dependence and the exchange behavior observed in this study.

  • PDF

New Soluble and Intrinsically Photosensitive Polyimide: Synthesis and Properties of Poly(amide-co-imide) Containing p-Phenylenediacryloyl Moiety

  • Lee, Myong-Hoon;Cheong, Yun-Sang;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.327-331
    • /
    • 2001
  • A new soluble photosensitive poly(amide-co-imide) containing p-phenylenediacryloyl moiety was synthesized and its photoreactivity was characterized. The copolymer was synthesized fromp-phenylenediacryloyl chloride, 4,4-(hexafluoroisopropylidene)diphthalic anhydride and two equivalents of bis(4-aminophenyl) ether in NMP with a subsequent chemical imidization of the resulting poly[amide$\xi$ο-(amic acid)] by acetic anhydride and pyridine. The structure and thermal properties of the polymer were characterized by spectroscopic methods and thermal analyses. The polymer was stable up to 350$\^{C}$, showed good solubility in polar aprotic solvents, and became insoluble after UV irradiation due to the[2+2] cycloaddition of phenylenediacryloyl moiety. Photoreactivity of the polymer was investigated in solution or as a film with respect to the various exposure conditions by UV/Vis spectroscopy. The photosensitivity was noticeably increased with the irradiation temperature, especially in the presense of photosensitizer. The reason for the increased sensitivity was speculated based on the flexibilization of main chain at elevated temperature. Exposure characteristic curves were obtained from the gel fraction experiments after UV irradiation. The sensitivity and contrast at 160$\^{C}$ were measured to be 293 mJ/㎠ and 1.64, respectively.

  • PDF

Optically Active and Organosoluble Poly(amide-imide)s Derived from N,N'-(Pyromellitoyl)bis-L-histidine and Various Diamines: Synthesis and Characterization

  • Faghihi, Khalil;Shabanian, Meisam;Hajibeygi, Mohsen
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.912-918
    • /
    • 2009
  • An optically active diacid containing the L-histidine moiety was prepared by reacting pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic acid 1,2,4,5-dianhydride) 1 with L-histidine 2 in acetic acid, and was polymerized with several aromatic diamines 5a-g to obtain a new series of optically active poly(amide-imide)s (PAIs) using two different methods, such as direct polycondensation in a medium consisting of N-methyl-2-pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride ($CaCl_2$)/pyridine (Py) and direct polycondensation in a tosyl chloride (TsCl)/pyridine (Py)/N,N-dimethylformamide (DMF) system as a condensation agent. The resulting new polymers 6a-g with inherent viscosity was obtained in good yield. The polymers were readily soluble in polar organic solvents, such as N,N-dimethyacetamide (DMAc), N,N-dimethyformamide (DMF), and dimethyl sulfoxide (DMSO). The obtained polymers were characterized by FTIR, specific rotation, elemental analysis as well as $^1$H-NMR spectroscopy and gel permeation chromatography (GPC). The thermal stability of the resulting PAIs was evaluated with thermogravimetric analysis techniques under a nitrogen atmosphere.

Examining the performance of PAI/ZnO synthesized with diamine and nano particles

  • Jianwei Shi;Xiaoxu Teng
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.201-210
    • /
    • 2023
  • A ZnO/poly (amide-imide) hybrid nanocomposite film with different weight percentages of Zinc oxide (ZnO) nanoparticles is synthesized and characterized in this paper. A two-step reaction successfully synthesized a new kind of heteroaromatic diamine with bulky pendant groups. In order to produce 3, 5-dinitro-3, 3-bis (4-(4-Nitrophenoxy) phenyl) -2- benzofuran-1-one, 3, 3'-bis (4-hydroxyphenyl) benzofuran-1-one and 3'-bis (4-hydroxyphenyl) benzofuran-1-one were combined with 3'-bis (3-hydroxyphenyl) benzofuran-1-one. The obtained dinitro was then reduced by zinc dust and hydrochloric acid. The reaction of 4, 4* carbonyl diphthalic anhydride with amino acid L-alanine in acetic acid leads to the production of very high yields of chiral diacid monomer. As a result of the direct polymerization of these monomers, new optically active polymers were formed (amide-imide). In order to synthesize poly (amide-imide)/ZnO nanocomposites with different weight percentages (2, 4, 6, 8, and 10%), PAI and ZnO nanoparticles were combined using ultrasonication SEM, Fourier transform infrared spectroscopy, X-ray diffraction and thermal gravimetry were used to characterize the PAI films.

Characterization of intrinsic molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing: impacted by source origin

  • Alessandra M.R.C.B., de Oliveira;Peiqiang, Yu
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.256-263
    • /
    • 2023
  • Objective: Feed molecular structures can affect its availability to gastrointestinal enzymes which impact its digestibility and absorption. The molecular spectroscopy-attenuated total reflectance Fourier transform infrared vibrational spectroscopy (ATR-FTIR) is an advanced technique that measures the absorbance of chemical functional groups on the infrared region so that we can identify and quantify molecules and functional groups in a feed. The program aimed to reveal the association of intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The objective of this study was to characterize special intrinsic carbohydrate and protein-related molecular structure spectral profiles of feedstock and co-products (meal and pellets) from bio-oil processing from two source origins: Canada (CA) and China (CH). Methods: The samples of feedstock and co-products were obtained from five different companies in each country arranged by the Canola Council of Canada (CCC). The molecular structure spectral features were analyzed using advanced vibrational molecular spectroscopy-ATR-FTIR. The spectral features that accessed included: i) protein-related spectral features (Amide I, Amide II, α-helix, β-sheet, and their spectral intensity ratios), ii) carbohydrate-related spectral features (TC1, TC2, TC3, TC4, CEC, STC1, STC2, STC3, STC4, TC, and their spectral intensity ratios). Results: The results showed that significant differences were observed on all vibrationally spectral features related to total carbohydrates, structural carbohydrates, and cellulosic compounds (p<0.05), except spectral features of TC2 and STC1 (p>0.05) of co-products, where CH meals presented higher peaks of these structures than CA. Similarly, it was for the carbohydrate-related molecular structure of canola seeds where the difference between CA and CH occurred except for STC3 height, CEC and STC areas (p>0.05). The protein-related molecular structures were similar for the canola seeds from both countries. However, CH meals presented higher peaks of amide I, α-helix, and β-sheet heights, α-helix:β-sheet ratio, total amide and amide I areas (p<0.05). Conclusion: The principal component analysis was able to explain over 90% of the variabilities in the carbohydrate and protein structures although it was not able to separate the samples from the two countries, indicating feedstock and coproducts interrelationship between CH and CA.

Transport Properties of CO2 and CH4 using Poly(ether-block-amide)/GPTMS Hybird Membranes (Poly(ether-block-amide)/GPTMS 하이브리드 분리막을 이용한 이산화탄소와 메탄의 투과특성)

  • Lee, Keun Chul;Kim, Hyunjoon
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.653-658
    • /
    • 2016
  • Poly(ether-block-amide)(PEBAX$_{(R)}$) resin is a thermoplastic elastomer combining linear chains of hard-rigid polyamide block interspaced soft-flexible polyether block. It was believed that the hard polyamide block provides the mechanical strength and permselectivity, whereas gas transport occurs primarily through the soft polyether block. The objective of this work was to investigate the gas permeation properties of carbon dioxide and methane for PEBAX$^{(R)}$-1657 membrane, and compare with those obtained for other grade of pure PEBAX$^{(R)}$, PEBAX$^{(R)}$-2533 and PEBAX$^{(R)}$ based hybrid membranes. The hybrid membranes based PEBAX$^{(R)}$ were obtained by a sol-gel process using GPTMS ((3-glycidoxypropyl) trimethoxysilane) as the only inorganic precursor. Molecular structure and morphology of membrane were analyzed by $^{29}Si$-NMR, DSC and SEM. PEBAX$_{(R)}$-2533 membrane exhibited higher gas permeability coefficients than PEBAX$^{(R)}$-1657 membrane. This was explained by the increase of chain mobility. In contrast, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$-1657 membrane was higher than PEBAX$^{(R)}$-2533 membrane. It was explained by the decrease of diffusion selectivity caused by increase of chain mobility. For PEBAX$^{(R)}$/GPTMS hybrid membrane, gas permeability coefficients were decreased with reaction time. Gas permeability coefficient of $CH_4$ was more significantly decreased than $CO_2$. It can be explained by the reduction of chain mobility caused by the sol-gel process, and strong affinity of PEO segment with $CO_2$. Comparing with pure PEBAX$^{(R)}$-1657 membrane, ideal separation factor of $CO_2/CH_4$ for PEBAX$^{(R)}$/GPTMS hybrid membrane has decreased to 4.5%, and gas permeability coefficient of $CO_2$ has increased 3.5 times.