• Title/Summary/Keyword: American ginseng

Search Result 156, Processing Time 0.027 seconds

Authentication of Korean Panax ginseng from Chinease Panax ginseng and Panax quinquefolius by AFLP analysis

  • Kim Bo-Bae;Jeong Jae-Hun;Jung Su-Jin;Yun Doh-Won;Yoon Eui-Soo;Choi Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • Panax ginseng is one of the most important medicinal plants in the world. The international trade of ginseng is increasing yearly. The disguise of Chinese and American ginseng into Korean ginseng became a problem in recent years in abroad and Korea. An effective method to authenticate the Korean Panax ginseng from others at a DNA level is necessary for the healthy development of the ginseng market. Amplified fragment length polymorphism (AFLP) analysis was applied to develop a method for the identification of Korean ginseng between Chinese ginseng and American ginseng. It is very difficult to detect the different polymorphic bands among Korean field cultivated ginseng, and between field and wild-cultivated ginseng. The genetic distance coefficient by AFLP analysis between field- and wild cultivated Korean ginseng was very low, 0.056. Whereas, polymorphic bands between Korean and Chinese wild-cultivated ginseng was significantly different. The genetic distance coefficient between wild-cultivated Korean and Chinese ginseng was 0.149. The genetic distance coefficients between the P. ginseng and P. quinquefolius were ranging from 0.626 to 0.666. These results support that the AFLP analysis could be applied to authenticate Korean P. ginseng from others Chinese P. ginseng and American ginseng (P. quinquefolius).

Genetic Diversity of Wild and Cultivated Populations of American Ginseng (Panax Quinquefolium) from Eastern North America Analyzed by RAPD Markers

  • Lim, Wan-Sang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.262-269
    • /
    • 2005
  • The objective of this study was to assess genetic diversity among 6 different wild ginseng populations from New York, Kentucky, North Carolina, Pennsylvania, Tennessee and Virginia, and to compare these wild populations to one cultivated population. RAPD markers were used to estimate the genetic difference among samples from the 7 populations. The 64 random primers were screened, and 15 primers were selected which exhibited the 124 highly reproducible polymorphic markers. The ratio of discordant bands to total bands scored was used to estimate the genetic distance within and among populations. Multidimensional scaling (MDS) of the relation matrix showed distinctive separation between wild and cultivated populations. The MDS result was confirmed using pooled chi-square tests for fragment homogeneity. This study suggests that RAPD markers can be used as population-specific markers for American ginseng.

Source-Sink Relations in North American Ginseng Seedlings as Influenced by Leaflet Removal

  • T. A., John
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.337-340
    • /
    • 2008
  • Seedlings of North American ginseng (Panax quinquefolius L.) were grown to full canopy establishment and then leaflet or leaf removal at different times applied to determine the effects on plant growth and performance. Leaf removal at 47, 57, 69 and 78 days after seeding resulted in 82.1, 59.8, 41.3 and 29.8% reduction, respectively, in root dry matter (economic yield) ; this indicates that leaf removal during the early root growth period causes greatest reduction in root yield. Removal of 1, 2, and 3 leaflets at 42, 52, 62 and 70 days from seeding reduced root weight at harvest (80 days from seeding) linearly, particularly at earlier removal dates. The perennating bud formed on all roots and was not influenced by treatment. This would suggest that if leaf loss occurs after canopy establishment the plant will re-grow the next year after the obligatory dormancy period.

Discrimination of American ginseng and Asian ginseng using electronic nose and gas chromatography-mass spectrometry coupled with chemometrics

  • Cui, Shaoqing;Wu, Jianfeng;Wang, Jun;Wang, Xinlei
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.85-95
    • /
    • 2017
  • Background: American ginseng (Panax quinquefolius L.) and Asian ginseng (Panax ginseng Meyer) products, such as slices, have a similar appearance, but they have significantly different prices, leading to widespread adulteration in the commercial market. Their aroma characteristics are attracting increasing attention and are supposed to be effective and nondestructive markers to determine adulteration. Methods: The aroma characteristics of American and Asian ginseng were investigated using gas chromatography-mass spectrometry(GC-MS) and an electronic nose (E-nose). Their volatile organic compounds were separated, classified, compared, and analyzed with different pattern recognition. Results: The E-nose showed a good performance in grouping with a principle component analysis explaining 94.45% of variance. A total of 69 aroma components were identified by GC-MS, with 35.6% common components and 64.6% special ingredients between the two ginsengs. It was observed that the components and the number of terpenes and alcohols were markedly different, indicating possible reasons for their difference. The results of pattern recognition confirmed that the E-nose processing result is similar to that of GC-MS. The interrelation between aroma constituents and sensors indicated that special sensors were highly related to some terpenes and alcohols. Accordingly, the contents of selected constituents were accurately predicted by corresponding sensors with most $R^2$ reaching 90%. Conclusion: Combined with advanced chemometrics, the E-nose is capable of discriminating between American and Asian ginseng in both qualitative and quantitative angles, presenting an accurate, rapid, and nondestructive reference approach.

Effect of Seeding Depth and of Soil Texture on Seeding Emergence and Root Shape of American Ginseng

  • Li, Thomas S.C.
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.115-118
    • /
    • 1997
  • Stratified American ginseng(Panax quinquefoilium L.) seeds were planted in a shaded greenhouse at four depths and in four different soil types to observe effects on emergence rate and root size. Seeding depth affected seedling emergence rates and the number of days required to complete emergence. The shape of the roots was affected by the texture of soil, especially percentage of sand.

  • PDF

Effects of Vesicular-Arbuscular Mycorrhizae on The Growth of American Ginseng (V. A. Mycorrhizae가 미국삼의 생육에 미치는 영향)

  • Thomas, S.C.Li
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.73-76
    • /
    • 1995
  • Newly sprouted American ginseng (Panax quinquefolium L.) seedlings were transplanted to forest pots with mycorrhizae-infested soil and grown in screenhouse for 2 years. Growth patterns, mortality rate and fresh root weight were investigated. Plants in VAM soil had lower mortality rales than control. In soils infested with two species of mycorrhizal fungi (Glomu deseyicola, frappe, Bloss and Merge and G. intraradices, Schenck and Smith), 28-35% of plants produced 3-prongs in the second season and significantly increased fresh root weight by 41 to 43%.

  • PDF

Evaluation of Herbicides for Management of Weeds in Cultivation of Panax quinquefolius L.

  • B Capell;R.D Reeleder;R Grohs;B Zilkey
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.135-147
    • /
    • 1999
  • Nine herbicide products (fluazifop-p-butyl, clethodim, MCPA-sodium, 2,4-0 amine, chlorthal dimethyl, diquat, glyphosate, ethalfluralin and oryzalin) were evaluated for use on ginseng (Panax quinquefolius). Products varied in their ability to suppress weeds and certain materials were phytotoxic to ginseng in some trials. Chlorthal dimethyl (broadleaf weeds), MCPA-sodium (broadleaf weeds), fluazifop-p-butyl (grass weeds), and clethodim (grass weeds) were found to be effective as weed control agents and did not adversely affect ginseng growth. Other products tested were either not efficacious or were phytotoxic to ginseng in some trials. Weed populations were mainly introduced into the planting sites via the straw mulches used in ginseng cultivation.

  • PDF

Clinical Effects of Korean Ginseng, Korean Red Ginseng, Chinese Ginseng, and American Ginseng on Blood Pressure in Mild Hypertensive Subjects

  • Choi, Dong-Jun;Jung, Woo-Sang;Park, Seong-Uk;Han, Chang-Ho;Lee, Won-Chul;Cho, Ki-Ho
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.198-208
    • /
    • 2006
  • Background : Ginseng has traditionally been used in oriental countries to recover vital energy from Qi deficiency, and has shown various biomedical effects in the scientific literature. Recent reports suggest that ginseng could regulate blood pressure (BP), but much controversy still remains. Therefore, we intended to assess the anti-hypertensive effect of several ginseng types frequently used in clinics. We also investigated the anti-hypertensive effect on Koreans and Chinese, and by the body type according to Sasang Constitution Medicine (SCM). Methods : The study subjects were recruited from mildly hypertensive patients who exhibited pre-hypertension(120/80 to 139/89 mmHg) and stage I hypertension (140/90 to 159/99 mmHg) in Korea and China. After assigning the subjects into a Korean, a Chinese, a red, and an American ginseng group by randomization, we prescribed ginseng at a dose of 4.5 g per day for 4 weeks. To assess the anti-hypertensive effect, we compared the mean of systolic and diastolic BP between before and after ginseng medication using a 24-hour ambulatory blood pressure monitor (24 hr ABPM. We also monitored adverse effect and laboratory findings to secure the subjects' safety. In addition, all of the subjects in Korea consulted a specialist of Sasang Constitution Medicine to identify their constitutional type. Results : There were 64 subjects treated with Korean ginseng, 58 treated with Chinese ginseng, 33 treated with red ginseng, and 64 treated with American ginseng. Korean, Chinese, and American ginseng all reduced subjects' BP; Korean and Chinese ginseng showed more effect. The secondary analysis on the subjects' nationality revealed that all of the ginseng types showed more significant anti-hypertensive effect in Chinese patients than in Koreans. The third analysis on the constitutional type of SCM showed there was no significant difference in the effectiveness and the safety of ginseng among the constitutional types. Conclusions : We suggest ginseng, especially Panax ginseng without any steaming-drying process, could be useful for mild hypertension. Further, ginseng is safe regardless of subjects' constitutional type or type of ginseng within a dosage of 4.5g per day.

  • PDF

Comparative Study on the Essential Oil Components of Panax Species (인삼속(Pauax species) 식물의 정유성분 조성 비교)

  • Ko, Sung-Ryong;Choi, Kang-Ju;Kim, Young-Hoi
    • Journal of Ginseng Research
    • /
    • v.20 no.1
    • /
    • pp.42-48
    • /
    • 1996
  • This study was carried out to determine the differences of essential oil components among Korean, Chinese and Japanese red ginseng, and Korean white ginseng (Panax ginseng C.A Mayer) , American and Canadian ginseng (P. Quinquefolium), and sanchi ginseng (P notoginseng). The steam distilled oils of these ginsengs were analyzed by GC and GC-MS, and 22 sesquiterpenes, 8 sesquiterpene alcohols, 8 monoterpenes, 5 aldehydes, 4 esters, 3 acids, 2 alcohols and 5 miscellaneous components were identified. The major oil components of Korean, Chinese and Japanese red ginseng were $\beta$-panasinsene, $\beta$-caryophyllene, $\alpha$-panasinsene, $\alpha$-neoclovene, selina-4,11-diane, bicyclo-ger-macrene and spathulenol. The contents of $\beta$-panasinsene, $\alpha$-neoclovene, $\alpha$-basabolene and spathulenol were higher in Korean red ginseng than Chinese and Japanese red ginseng. The contents of $\alpha$-cubebene, selina-4,11-diene and ledol were higher in Chinese red ginseng than Korean and Japanese red ginseng, but those of selina-4,11-diene and spathulenol were lower in Japanese red ginseng than Korean or Chinese red ginseng. On the other hand, the GC patterns of the oils from American, Canadian and sanchi ginseng were different from that of Korean white ginseng.

  • PDF