• Title/Summary/Keyword: Amelioration

Search Result 255, Processing Time 0.022 seconds

Conjugated Linoleic Acid (CLA) Ameliorates Hydrogen Peroxide-Induced Oxidative Stress on Rat Cardiomyoblast H9c2 Cells (Hydrogen peroxide를 처리한 rat 배아심근 H9c2 세포에서 CLA의 oxidative stress 완화 효과)

  • Park, Jae Hong;Moon, Yeon Gyu;Kwon, Jung Min;Cho, Yong Un;Kim, Jeong Ok;Ha, Yeong Lae
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1658-1664
    • /
    • 2012
  • Conjugated linoleic acid (CLA) exhibits several beneficial biological activities including anticarcinogenesis and body-fat reduction. Now, we report that CLA ameliorated the oxidative stress in rat cardiomyoblast cells, H9c2, treated with hydrogen peroxide ($H_2O_2$). Cells were cultured in DMEM/F-12 media at $37^{\circ}C$ with humidified atmosphere of 5% $CO_2$. The cells, cultured for 48 hrs, were seeded at a density $3.5{\times}10^3$ cell/well in a 24 well-plate and incubated for 24 hr. Using these cells, two experiments were performed: the cytotoxicity test of CLA (10, 20, 30, 40, and $50{\mu}Ms$), and the oxidative stress amelioration test of CLA (20 and $50{\mu}Ms$) against cells treated with $H_2O_2$ (10 and 50 ${\mu}Ms$) for 1 and 2 hrs. CLA enhanced the growth of H9c2 cells at any concentrations of CLA and at any incubation times (up to 6 days), indicating that CLA acts as a growth stimulant. No protective effect of CLA (20 and $50{\mu}Ms$) was seen in cells treated $50{\mu}M$ $H_2O_2$ for 1 and 2 hr, but these CLA concentrations ameliorated (p<0.05) the adverse effect of $10{\mu}M$ $H_2O_2$ in cells treated for 1 hr. These CLA concentrations significantly (p<0.05) reduced the proportion of apoptotic cells, relative to control cells. These results suggest that CLA protected H9c2 cells from the oxidative stress of $H_2O_2$ through the suppression of cell apoptosis and could be a useful compound for the prevention of cardiac diseases caused by oxidative stress.

Amelioration of Plasma Glucose and Cholesterol levels in Db/db Mice by a Mixture of Chinese Herbs (Db/db 마우스 모델에 있어서 한약재조성물의 혈당 및 혈장 콜레스테롤 개선효과)

  • Lee, Jai-Heon;Cho, Chang-Woo;Han, Xiang-Fu;Hwang, Ji-Yeon;Kang, Min-Jung;Joo, Hee-Jeong;Kim, Mi-Eun;Seo, Yeong-Ju;Kim, Jung-In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2008
  • Diabetes mellitus is the fifth leading cause of death among Koreans. Control of hyperglycemia and dyslipidemia is strongly correlated with decrease in risks for cardiovascular diseases, the most common and fatal diabetic complication. The effects of chronic feeding of a mixture of Chinese herbs on blood lipid profile were measured in an animal model of type 2 diabetes mellitus, db/db mice (C57BL/Ks). The Chinese herb mixture was composed of Panax ginseng C. A. Meyer,Astragalus membranaceus, Glycyrrhiza uralensis, Lycium chinense, Morus, Pueraria thunbergiana, Prunella vulgaris var. lilacina, Acanthopanax sessiliflorus, Schizandra chinensis, Scutellaria baicalensis, Dioscorea batatas, Polygonatum doratumvar. pluriflorum, Paeonia lactiflora, and Rehmannia glutinosa in a ratio of 1 : 0.7 : 0.4 : 0.7 :0.4 : 0.7 : 1.1 : 0.9 : 0.4 : 0.4 : 0.7 :0.7 : 0.9 : 0.9. Methanol extract of the Chinese herb mixture was tested for the inhibitory activity against yeast ${\alpha}$-glucosidase in vitro. The Chinese herb mixture extract inhibited ${\alpha}$-glucosidase by 25.2% at the concentration of 0.5mg/mL. Four weekold male db/db mice (n = 14) were fed AIN-93G semipurified diet or diet containing 10% powder of the Chinese herb mixture for 6 weeks after 1 week of adaptation period. Body weight (39.5 ${\pm}$ 1.6 g) and food intake (4.3 ${\pm}$ 0.6 g/day) of the Chinese herb group were not significantly different from those of the control group (40.4 ${\pm}$ 2.6 g and 4.5 ${\pm}$ 0.6 g/day). Consumption of Chinese herb mixture significantly decreased plasma glucose level (442.5 ${\pm}$ 36.0mg/dL) compared with the control group (489.8 ${\pm}$ 34.6 mg/dL, p < 0.05). Plasma cholesterol level (159.2 ${\pm}$ 18.4 mg/dL) of the Chinese herb group was significantly lower than that of the control group (185.4 ${\pm}$ 13.7 mg/dL, p < 0.05). Blood glycated hemoglobin (6.3 ${\pm}$ 0.8%) and plasma triglyceride levels (99.4 ${\pm}$ 15.0mg/dL) of the Chinese herb group were not significantly different from those of the control group (6.7 ${\pm}$ 0.7% and 108.8 ${\pm}$ 11.0mg/dL). Thus, the Chinese herb mixture could be useful in the treatment of diabetes and cardiovascular complications of diabetes.

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Variation of Rice Production for Two Decades before and after Breeding Tongil Variety in Korea (수도 통일품종 육성보급 전후 20년간의 생산성 변이)

  • Eun-Woong Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.183-192
    • /
    • 1982
  • The variability of rice productivity during last 2 decades (1961-1980) of ten years before and after the introduction of"Tongil" was reviewed from the epochal, regional and varietal points of view. During that period the cultivated area of paddy rice have remained almost unchanged, while the total rice production have got elevated from 3, 463 million metric tons in 1961 to 6.006 million metric tons in 1977, recording 73.4% increase. This remarkable increase in rice production is considered to be attributable much to the development and release of new high yielding variety, "Tongil", coupled with the amelioration of cultural techniques. However, in 1978 Tongil type varieties experienced the epidemic outbreak of blast disease due to the shifted race population of blast fungus and in 1980 recorded poor rice production as low as in 1960's due to the unfavorable weather stress throughout the rice growing season, giving rise to many problems awaiting solutions for securing the stabilized high production of rice. The rice yield has continued the gradual increase during last two decades but its difference between farmer and research organization have got wider from 79kg/10a during 1960 to 1971 to 101kg/l0a during 1972 to 1980, and also the inter-regional differences have been increased from 50-60kg/10a to 80kg/10a during those periods. Therefore, this proves that we have raised the upper boundary of rice yield by increasing the yield potential of rice variety but have not changed those absolute deviations. Estimates indicate that the increased rice production during that period was indebted 40 percent to the varietal improvement and 13 percent to the ameliorated agro-technologies, and the rest, 47 percent, could be ascribed to the other factors besides varieties and cultural technologies such as the improved agricultural environments, etc. Of course, even though it cannot be expected to unify the cultural environments and the cultural technologies, provided that much efforts are to be endeavored to minimize the yield difference of 20 percent between farmer and research organizations and the inter-regional yield difference of 20 percent, much increased rice production can be expected to be achieved with the current level of cultural technology and the yielding potential of the present rice varieties. In order to expedite the above effects on rice production the followings are to be put into practices consitently and steadfastly. 1. Reinforcement of breeding for varieties with high yielding potential and less susceptible to climatic-stress and pests, and of basic physicoecological studies of rice plant for improving the cultural technologies. 2. Continuous endeavor to secure the stabilized cultural environments by improving the soil fertility and increasing the drainage and irrigation facilities. 3. Political back-up to encourage the farmers' incentives for production 4. Precise surveys for agricultural statistics to facilitate the long-term planninge long-term planning.

  • PDF

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.