• Title/Summary/Keyword: Ambiguity resolution

Search Result 141, Processing Time 0.024 seconds

The Benefit of Ambiguity Resolution Using Triple Frequency

  • Tominaga, Reiji;Gomi, Yasuto;Zhang, Yun;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.23-26
    • /
    • 2006
  • Modernized GPS will have three frequencies modulated with three signals, which will be accessible to all users in the near future. This new frequency provides an opportunity to resolve the double differenced (DD) integer ambiguity very fast and with almost no baseline constraints. In order to study the performance of triple frequency system for Ambiguity Resolution (AR) over the medium baseline under different ionospheric levels, the Klobuchar Model was implemented and used in our triple simulation to generate the ionospheric delay. Furthermore, the White-Gaussian noise applying to distance-dependent parameters was added to the DD ionospheric delay. For medium baseline (defined as here 20 to 40kms), success rates of AR has been pretty improved. In this paper, the medium baseline AR strategies that take advantage of carrier phase measurement on the third frequency will be discussed.

  • PDF

Improvement of Single-Frequency Ambiguity Resolution Performance for GPS-Based Structure Monitoring (구조물 거동 모니터링을 위한 단일주파수 GPS 반송파 미지정수 결정의 성능향상)

  • Lee Hung-Kyu;Lee Young-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.39-45
    • /
    • 2006
  • This paper describes an effective and fast algorithm for GPS carrier-phase ambiguity resolution (AR) which can apply for structure monitoring, and a series of simulation analyses have been carried out to demonstrate the performance of the algorithm. The results show that single-frequency AR performance is significantly improved In term of Time-To-Fix-First (TTFF) ambiguity.

  • PDF

A Fast Integer Ambiguity Resolution Method For Precise Positioning On- The-Fly (OTF 정밀측위를 위한 신속한 미지정수 결정방법)

  • 이대규;성태경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.458-463
    • /
    • 2004
  • This paper presents a fast IA(integer ambiguity) resolution method that determines the IA within short epochs with guaranteed reliability. Based on the fact that the search volume and the cost function are influenced by the selection of primary IAs in the plane intersection method, an IA resolution method is proposed that evaluates IA candidates repeatedly in an epoch with different combinations of primary IAs. In order to guarantee the reliability of the resolved IA with a certain probability, an inequality condition for selecting differencing operator is derived. Experiment results show that the proposed method consistently provides the true IA estimates within short time.

Analysis of the effects of the baseline length accuracy in integer ambiguity resolution for GPS attitude determination system

  • Lee, Geon-Woo;Son, Seok-Bo;Park, Chan-Sik;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1211-1215
    • /
    • 2005
  • In the GPS attitude determination system, the baseline length constraints can be used efficiently to reduce the search space. It is possible by adopting the assumptions that the baseline length doesn't change and the true baseline length is precisely known. But in real situation, the baseline length might be changed by many reasons and it is impossible to measure the true baseline length because there exists measurement error and antenna phase centre movement. In order to analyze the effect of the baseline length accuracy, one needs to know the relation between the accuracy of the baseline length and success rates of the integer ambiguity resolution. In this paper, the effect of the baseline length accuracy to the integer ambiguity resolution in the attitude determination system is analyzed by empirical method. The results show that the margins in the baseline length accuracy is less than a few cm which implies that one should take great cares when applying the attitude determination system to the flexible structures.

  • PDF

An Instantaneous Integer Ambiguity Resolution for GPS Real-Time Structure Monitoring (GPS 실시간 구조물 모니터링을 위한 반송파 관측데이터 순간미지정수 결정)

  • Lee, Hungkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.341-353
    • /
    • 2014
  • In order to deliver a centimeter-level kinematic positioning solution with GPS carrier-phase measurements, it is prerequisite to use correctly resolved integer ambiguities. Based on the mathematical modeling of GPS network with application of its geometrical constraints, this research has investigated an instantaneous ambiguity resolution procedure for the so-called 'integer constrained least-squares' technique which can be effectively implemented in real-time structure monitoring. In this process, algorithms of quality control for the float solutions and hypothesis tests using the constrained baseline for the ambiguity validation are included to enhance reliability of the solutions. The proposed procedure has been implemented by MATLAB, the language of technical computing, and processed field trial data obtained at a cable-stayed bridge to access its real-world applicability. The results are summarized in terms of ambiguity successful rates, impact of the stochastical models, and computation time to demonstrate performance of the instantaneous ambiguity resolution proposed.

Integer ambiguity propagation method for a precise positioning using GNSS carrier phase measurements (GNSS 반송파 위상을 이용한 정밀 측위에서 미지정수 전파기법)

  • Han, Deok-Hee;Yun, Hee-Hak;Park, Chan-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.678-684
    • /
    • 2009
  • Many researches on the GNSS integer ambiguity resolution methods for precise positioning and attitude determination applications have been done. However, by the time invariant property of the integer ambiguity, the reuse of integer ambiguity without performing time consuming integer search procedure is possible. In this paper, a new efficient integer ambiguity propagation method is proposed. The initial integer ambiguity can be determined using the famous LAMBDA method and it is propagated with the propagation method. The proposed method can reconfigure the integer ambiguity using the previous epoch's integer ambiguity and new carrier phase measurements under environmental variations such as geometry changes, signal blockage and reacquisition. Experiments with real measurements show the proposed method can determine an integer ambiguity effectively.

A Comparative Analysis of Performance of Ambiguity Validation Methods (미지정수 후보 타당성 검정 기법간의 비교 분석)

  • Ko, Jae-Young;Shin, Mi-Young;Han, Young-Hoon;Cho, Deuk-Jae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In high precision positioning systems based on GNSS, ambiguity resolution is an important procedure. Correct ambiguity leads to positioning results which have high precision between millimeters and centimeters. However, when the ambiguity is determined incorrectly, ensuring accuracy and precision of the positioning result is impossible. An ambiguity validation test is required to obtain correct ambiguity when ambiguity resolution is performed based on the ILS (Integer Least Squares), which shows the best performance in point of theory and experiment when compared with other methods such as IR (Integer Rounding) and IB (Integer Bootstrapping). Comparison between the candidates of the validation test is needed to judge ambiguity correctly, because ILS searches for candidates of integer ambiguity, unlike other methods which calculate only one integer ambiguity. We analyzed the experimental performance of ambiguity validation tests. R-ratio, F-ratio and W-ratio were adopted for analysis. The performance of validation tests was evaluated by classifying normal operation, detection, missed detection and false alarm. As a result, strengths and weaknesses of validation tests was showed to experimental. we concluded that validation tests must be selected according to environment.

Design of a Two-dimensional Attitude Determining GPS Receiver (이차원 자세 측정용 GPS 수신기 설계)

  • 손석보;박찬식;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • A design of CPS attitude determination system is described in this paper. The designed system is a low cost high precision 24 channel single frequency GPS(Global Positioning System) receiver which provides a precise absolute heading and pitch (or roll) as well as a position. It uses commercial chip-set and consists of two RF parts, two signal-tracking parts, a processor, memory parts and I/Os. In order to determine precise attitude, accurate carrier phase measurements and an efficient integer ambiguity resolution method are required. To meet these requirements, a PLL (Phase Locked Loops) is designed, and an algorithm called ARCE (Ambiguity Resolution with Constraint Equation) is adopted. The hardware and software structure of the system will be described, and the performance evaluated under various conditions will be presented. The test results will promise that more reliable navigation system be possible because the system provides all navigational information such as position, velocity, time and attitude.

  • PDF

The Improved Success Rate of Integer Ambiguity Resolution by Using Many Visible GPS/GNSS Satellites

  • Kondo, Kentaro
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.243-246
    • /
    • 2006
  • This study investigates the improvement in the theoretical success rate of the integer ambiguity resolution in GPS/GNSS carrier-phase positioning by using many visible satellites. It estimates the dependence of the rate on the baseline length in relative positioning under the condition of the use of double/triple-frequency navigation signals. The calculation results show that the use of 14 navigation satellites (i.e., seven GPS and seven Galileo ones) remarkably improves the success rate under the condition of very short baseline length, compared with the use of seven GPS ones. The numerical reliability of the calculated success rates is strictly tested by examining the tightness of the union and minimum-distance bounds to the rate. These bounds are also shown to be effective to investigate the realization of the high success rates.

  • PDF

Lexical Ambiguity Resolution System of Korean Language using Dependency Grammar and Collative Semantics (의존 문법과 대조 의미론을 이용한 한국어의 어휘적 중의성 해결 시스템)

  • 윤근수;권혁철
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.1
    • /
    • pp.1-24
    • /
    • 1991
  • This paper presents the Lexical Ambiguity Resolution System of Korean Language. This system uses Dependency grammar and Collative Semantics. Dependency grammar is used to analyze Korean syntactic dependency. A robust way to analyze a sentence is to establish links between individual words. Collative Semantics investigates the interplay between lexical ambiguity and semantics relations. Collative Semantics consists of sense-frame, semantic vector, collation, and screening. Our system was implemented by C programming language. This system analyzes sentences, discriminates the kinds of semantic relation between pairs of words senses in those sentences, and resolves lexical ambiguity.