• Title/Summary/Keyword: Ambient particulate matter

Search Result 133, Processing Time 0.022 seconds

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Detection of Pathogenic Viruses in the Atmosphere during Asian Dust Events in Incheon City (인천지역에서 황사 기간 동안 대기 중의 바이러스 검출에 관한 연구)

  • Park, Jeong Woong;Lim, Young Hee;Kyung, Sun Young;An, Chang Hyeok;Lee, Sang Pyo;Jeong, Seong Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.279-285
    • /
    • 2005
  • Background : Ambient particles during Asian dust events are usually less than $10{\mu}m$ in size, and known to be associated with the adverse effects on the general population. There is little evidence linking Asian dust to adverse effects on the airways. In 2002, the authors found that particulate matter during Asian dust events had an effect on the symptoms and pulmonary function of patients with bronchial asthma. An aggravating factor might be that of a viral infection, but this remains unclear. Conversely, it has been speculated that African dust may carry the virus responsible for foot and mouth disease. Asian dust events are also likely to be responsible for transporting viruses, some of which are pathogenic, and common in many environments. Therefore, in this study, air samples were screened for the presence of viruses. Methods : Air samples were collected 20 times each during Asian dust events and under non-dust conditions, for at least 6 hours per sample, using a high volume air sampler (Sibata Model HV500F), with an airflow rate of 500L/min, between April and August 2003, and between April and August 2004. The samples were then screened for the presence of targeted viruses (Influenza A, B, Hog cholera virus, and Aphthovirus) using a polymerase chain reaction method. Results : One Asian dust event occurred between April and August 2003, and 3 between April and August 2004, with a 24 hour average PM10 level of $148.0{\mu}g/m^3$. The 24 hour average PM10 level was $57{\mu}g/m^3$. There was a significant difference in the PM10 concentration between dusty and clear days. No viruses (Influenza virus, Aphthovirus, and Hog cholera virus) were identified in the air samples obtained during the dusty days. Conclusions : Although no virus was detected in this study, further studies will be needed to identify suspected viruses carried during Asian dust events, employing more appropriate virus detection conditions.