• Title/Summary/Keyword: Ambient light

Search Result 362, Processing Time 0.026 seconds

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Enhancement of storage stability of red beet pigment using broccoli extracts (브로콜리 추출물을 이용한 레드 비트 색소의 저장 안정성 향상 연구)

  • Kim, Jong Hun;Kang, Ji Yeon;Ko, EunByul;Kim, Jong-Yea
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.610-614
    • /
    • 2019
  • The effect of broccoli extracts on the storage stability of red beet extracts under various conditions (temperature, light condition, and pH) was analyzed. Regardless of the pH and light conditions, the absorbance of the red beet pigment at 537 nm was relatively stable (less than 10% reduction) at 4℃ for up to 5 days. The absorbance of the control extracts was rapidly reduced during storage at an ambient temperature in the dark, but the degree of reduction was relatively low at pH 3.8. As a positive control, the addition of vitamin C to the control extracts slightly inhibited the reduction (40% reduction), but the degree of the inhibition was much higher (15% reduction) with the addition of broccoli extracts (in 70% ethanol). Among all the samples, the addition of the broccoli floret extracts using 70% ethanol was the most effective method for the enhancement of the storage stability of red beet pigment at an ambient temperature in the dark.

Affecting Factor Analysis for Respiration Rate Measurement Using Depth Camera (깊이 카메라를 이용한 호흡률 측정에 미치는 영향 요인 분석)

  • Oh, Kyeong-Taek;Shin, Cheung-Soo;Kim, Jeongmin;Jang, Won-Seuk;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.19 no.3
    • /
    • pp.81-88
    • /
    • 2016
  • The purpose of this research was to analyze several factors that can affect the respiration rate measurement using the Creative Senz3D depth camera. Depth error and noise of the depth camera were considered as affecting factors. Ambient light was also considered. The result of this study showed that the depth error was increased with an increase of the distance between subject and depth camera. The result also showed depth asymmetry in the depth image. The depth values measured in right region of the depth image was higher than real distance and depth values measured in left of the depth image was lower than real distance. The difference error of the depth was influenced by the orientation of the depth camera. The noise created by the depth camera was increased as the distance between subject and depth camera was increased and it decreased as the window size was increased which was used to calculate noise level. Ambient light seems to have no influence on the depth value. In real environment, we measured respiration rate. Participants were asked to breathe 20 times. We could find that the respiration rate which was measured from depth camera shows excellent agreement with that of participants.

Effects of Supplemental LED Lighting on Productivity and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) Grown on the Bottom Bed of the Two-Bed Bench System (2단 베드 시스템의 하단부에서 자란 딸기의 생산성 및 과일 품질에 미치는 보광 LED의 효과)

  • Choi, Hyo Gil;Jeong, Ho Jeong;Choi, Gyeong Lee;Choi, Su Hyun;Chae, Soo Cheon;Ann, Seoung Won;Kang, Hee Kyoung;Kang, Nam Jun
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.199-205
    • /
    • 2018
  • The aim of this study was to confirm that effects of supplemental LED illumination on a strawberry yield and fruit quality when strawberry grown on a bottom bed to be deficient ambient light due to shading of a upper bed during cultivation by a two-bed bench system. A strawberry was cultivated as a drip irrigation system in the two-bed bench system filled with a strawberry exclusive media from October 2015 to January 2016. The upper and the bottom bed without LED illumination for growth of a strawberry were using as a control. For LED light treatments, from 10 am to 4 pm, we illuminated LEDs as $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light intensity by using blue, red, and mixing LED (blue plus red) on the strawberry plants of the bottom bed. In the yield of strawberry fruit, the strawberry grown on the bottom bed treated with the blue LED significantly increased compared with that of the bottom bed part control, and increased to by near 90% of the strawberry output of the upper bed part control. The soluble sugar content of strawberry fruit grown on the upper bed part control and on the bottom bed illuminated with blue or mixed LED was higher than that of red LED and the control of the bottom bed. The content of anthocyanin was the highest increased in the strawberry grown on the upper bed part control that received a lot of ambient light, however when comparing only the bottom bed, strawberry fruits grown on all LED treatments were higher than that of the control. Therefore, we considered that using of the blue LED light on the bottom bed of two-bed bench system during strawberry cultivation is advantageous for the increase of yield and improvement of fruit quality.

Designing and Fabricating of the High-visibility Smart Safety Clothing (고시인성 스마트 안전의류의 설계 및 제작)

  • Park, Soon-Ja;Kim, Sun-Woong
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.105-116
    • /
    • 2020
  • The purpose of this study is to progress the limitations and disadvantages of existing safety clothing by applying high technology to current safety clothing that is produced and distributed only with fluorescent fabrics and retroreflective materials. Therefore, the industrial suspender-type safety belt and engineering technology are introduced, designed, and fabricated to help save a life in an emergency. First, the suspender-type safety belt to be developed is designed to emit light by LED attached to the film, and the body of the belt-wearer is recognized from a distance through retroreflection from the flashing LED. It aims to support people's safety by preventing accidents during roadside work, rescue activities, and sports activities at night. Second, with the development of advanced devices when the user is in an unconscious state due to distress or falls into an unconscious state due to distress or accident, the tilt sensor of the control unit attached to the belt automatically detects the angle of the human body and generates light and sound. It is intended to further enhance the utilization by mounting a sensing and signaling device that generates a distress signal and shaping it in the form of a belt attached to a vest that can be easily detached from the outside of the garment. When the wearer falls due to an accident, the tilt sensor of this belt detects the angle change and then the controller generates a high-frequency sound and repeated LED blinking signals at the same time. In the case of conventional safety vests, it is almost impossible to detect that the person is wearing a vest when there is no ambient light, but in case of the safety belts in this study, the sound and light signals of the safety belt enable us to find the wearer within 100 meters even when there is no ambient light.

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading (하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Choe, Gyeong-Cheol;Park, Hyun-Gil;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2011
  • It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

Development and Evaluation of Children's Smart Photonic Safety Clothing ( 어린이의 스마트 포토닉 안전의복의 개발 및 평가)

  • Soon-Ja Park;Dae-jin, Ko;Sung-eun, Jang
    • Science of Emotion and Sensibility
    • /
    • v.26 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Following ISO 20471, in this study, first, two sets of safety clothes and safety vests were made by designing and attaching animal and bird patterns preferred by children to retroreflective films and black fabrics on those fluorescent fabrics and retroreflective materials prescribed by international standards. Second, by mounting a smart photonic device on the safety clothing so that the body can be recognized from a distance even without an ambient light source at night, children can emit three types of light depending on the situation with just one-touch of the button. From a result of comparison with visibility a day and night by dressing a mannequin in the made smart safety clothing, the difference in visibility was evident at night, it was confirmed that we can see the figure of a person even at a distance of approximately 70 m. Therefore, it is expected to contribute to the prevention of traffic and other accidents on the road, as the drivers driving at night or in bad weather can recognize a person from a distance. Third, in case of the energy is exhausted and cannot maintain the stability of the light-emitting function of the optical faber, we can use energy harvesting device, and the light-emitting time will be extended. As a result it comes up to emit light stably for a long time. And this prove that smart photonic safety clothing can also be used for night workers. Therefore, optical fiber safety clothing is expected to be highly wearable not only in real life but also in dark industrial sites due to stable charging by applying the energy harvesting provided by solar cells.

Different Photosynthetic Responses of Black Cherry (Prunus serotina) with Different Sensitivities to Ambient Ozone Concentrations under Natural Conditions (자연상태에서 대기 중 오존 농도에 상이한 민감성을 가진 Black Cherry(Prunus serotina)의 상이한 광합성 반응)

  • Yun, Myoung-Hui;Chevone, Boris I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.132-140
    • /
    • 2008
  • Two different sensitivity classes of black cherry (Prunus serotina) under the natural growing environmental conditions were assessed adjacent to Air Monitoring Station located at Horton research center in Giles County, Virginia, USA. Ambient ozone concentrations, leaf gas exchange, and visible foliar injury were measured on-site during the growing seasons of 2000, 2001, and 2002. Ambient ozone exposures were sufficient to induce typical foliar visible injury corresponding with the reduction in photosynthetic activities only in sensitive black cherry. There were positive correlations between increasing cumulative ozone concentration and percent reduction in maximum net photosynthetic rates ($Pn_{MAX}$) under saturating light conditions and in quantum yield for carbon reduction (${\Phi}CO_2$) of sensitive black cherry compared to tolerant black cherry. There was a negative correlation between chlorophyll content and percent leaf injury in sensitive black cherry. Furthermore, $Pn_{MAX}$ was inversely related to percent leaf injury.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

Study on the Productivity of Microalgae Nannochloropsis sp. Using the Highly Efficient Vertical Photobioractor (수직형 고효율 광배양기를 통한 미세조류 Nannochloropsis sp.의 생장성 연구)

  • Kim, Young-Nam;Chung, Myung-Hee;Kim, Eun-Joo;Karnadi, Vita;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2015
  • We have investigated the productivity of microalgae, Nannochloropsis sp., using highly efficient vertical photobioreactor which has been developed by the company IMBiz. This experiment was performed in the field for one month with 2 sets of 2 tons of media under autotrophic cultural mode. In the culture with 0.1% of $CO_2$, the average daily productivity was shown to be up to 0.953g per liter, and 0.574g per liter in the culture with only ambient air. The temperature ranged from $20^{\circ}C$ to $31^{\circ}C$, and it didn't make any differences on the productivity. The light intensity ranged from 5,000 Lux to 40,000 Lux. The light has been appeared to have a very close relationship with the productivity of microalgae. Meanwhile, the harvesting method of pressurefloating attempted in this photobioreactor was found to be very effective.