• Title/Summary/Keyword: Ambient ionization

Search Result 24, Processing Time 0.023 seconds

Peltier Heating-Assisted Low Temperature Plasma Ionization for Ambient Mass Spectrometry

  • Lee, Hyoung Jun;Oh, Ji-Seon;Heo, Sung Woo;Moon, Jeong Hee;Kim, Jeong-hoon;Park, Sung Goo;Park, Byoung Chul;Kweon, Gi Ryang;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.6 no.3
    • /
    • pp.71-74
    • /
    • 2015
  • Low temperature plasma (LTP) ionization mass spectrometry (MS) is one of the widely used ambient analysis methods which allows soft-ionization and rapid analysis of samples in ambient condition with minimal or no sample preparation. One of the major advantages of LTP MS is selective analysis of low-molecular weight, volatile and low- to medium-polarity analytes in a sample. On the contrary, the selectivity for particular class of compound also implies its limitation in general analysis. One of the critical factors limiting LTP ionization efficiency is poor desorption of analytes with low volatility. In this study, a home-built LTP ionization source with Peltier heating sample stage was constructed to enhance desorption and ionization efficiencies of analytes in a sample and its performance was evaluated using standard mixture containing fatty acid ethyl esters (FAEEs). It was also used to reproduce the previous bacterial identification experiment using pattern-recognition for FAEEs. Our result indicates, however, that the bacterial differentiation from FAEE pattern recognition using LTP ionization MS still has many limitations.

Effect of Ultrasonic Microdroplet Generation in the Low-Temperature Plasma Ionization-Mass Spectrometry

  • Lee, Hyoung Jun;Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.10 no.4
    • /
    • pp.103-107
    • /
    • 2019
  • Low-temperature plasma (LTP) ionization is one of the ambient ionization methods typically used in mass spectrometry (MS) for fast screening of chemicals with minimal or no sample preparation. In spite of various advantages of LTP ionization method, including simple instrumentation and in-situ analysis, more general applications of the method are limited due to poor desorption of analytes with low volatilities and low ionization efficiencies in the negative ion mode. In order to overcome these limitations, an ultrasonic vibrator of a commercial hand-held humidifier was interfaced with an LTP ionization source, which generated microdroplets from sample solutions and assisted with LTP ionization. Ionization behaviors of various chemicals in microdroplet-assisted LTP (MA LTP) were tested and compared with typical LTP ionization from dried samples applied on a surface. MA LTP efficiently ionized small organic, amino, and fatty acids with low volatilities and high polarities, which were hardly ionized using the standard LTP method. Facile interaction of LTP with ultrafine droplets generated by ultrasonic resonator allows efficient ionization of relatively non-volatile and polar analytes both in the positive and negative ion modes.

Review on the Analytical Methods and Ambient Concentrations of Organic Nitrogenous Compounds in the Atmosphere (대기 유기질소화합물의 분석방법 및 농도)

  • Choi, Na Rae;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.120-143
    • /
    • 2018
  • The analytical methods and their ambient levels of organic nitrogenous compounds such as nitrosamines, nitramines (nitroamines), imines, amides and nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the atmosphere are summarized and discussed. Sampling for the analysis of organic nitrogenous compounds was mostly conducted using high volume air sampler. The direct liquid extraction (DLE) using sonification and the pressurized liquid extraction (PLE) using the accelerated solvent extraction (ASE) have been frequently employed for the extraction of organic nitrogenous compounds in the atmospheric samples. After extraction, clean-up via filtration and the solid phase extraction (SPE) and concentrations using nitrogen and rotary evaporator have been generally conducted but in some studies the clean-up and concentration steps have been omitted to prevent the loss of analyte and improve the recovery rate of the analytical procedure. Instrumental analysis was mainly carried out using gas chromatography (GC) or the high performance liquid chromatography (HPLC) coupled with the single quadrupole mass spectrometer or tandem mass spectrometer in the electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) mode and analysis sensitivity of nitrosamines and nitramines were higher in NCI mode. Desirable sampling and analysis methods for analyzing particulate organic nitrogenous compounds are suggested.

Ambient Mass Spectrometry in Imaging and Profiling of Single Cells: An Overview

  • Bharath Sampath Kumar
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.121-140
    • /
    • 2023
  • It is becoming more and more clear that each cell, even those of the same type, has a unique identity. This sophistication and the diversity of cell types in tissue are what are pushing the necessity for spatially distributed omics at the single-cell (SC) level. Single-cell chemical assessment, which also provides considerable insight into biological, clinical, pharmacodynamic, pathological, and toxicity studies, is crucial to the investigation of cellular omics (genomics, metabolomics, etc.). Mass spectrometry (MS) as a tool to image and profile single cells and subcellular organelles facilitates novel technical expertise for biochemical and biomedical research, such as assessing the intracellular distribution of drugs and the biochemical diversity of cellular populations. It has been illustrated that ambient mass spectrometry (AMS) is a valuable tool for the rapid, straightforward, and simple analysis of cellular and sub-cellular constituents and metabolites in their native state. This short review examines the advances in ambient mass spectrometry (AMS) and ambient mass spectrometry imaging (AMSI) on single-cell analysis that have been authored in recent years. The discussion also touches on typical single-cell AMS assessments and implementations.

Differential Rapid Screening of Phytochemicals by Leaf Spray Mass Spectrometry

  • Muller, Thomas;Cooks, R. Graham
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.919-924
    • /
    • 2014
  • Ambient ionization can be achieved by generating an electrospray directly from plant tissue ("leaf spray"). The resulting mass spectra are characteristic of ionizable phytochemicals in the plant material. By subtracting the leaf spray spectra recorded from the petals of two hibiscus species H. moscheutos and H. syriacus one gains rapid access to the metabolites that differ most in the two petals. One such compound was identified as the sambubioside of quercitin (or delphinidin) while others are known flavones. Major interest centered on a $C_{19}H_{29}NO_5$ compound that occurs only in the large H. moscheutos bloom. Attempts were made to characterize this compound by mass spectrometry alone as a test of such an approach. This showed that the compound is an alkaloid, assigned to the polyhydroxylated pyrrolidine class, and bound via a $C_3$ hydrocarbon unit to a monoterpene.

Development of primary reference gas mixtures of 18 volatile organic compounds in hazardous air pollutants (5 nmol/mol level) and their analytical methods

  • Kang, Ji Hwan;Kim, Yong Doo;Lee, Jinhong;Lee, Sangil
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.202-211
    • /
    • 2021
  • Volatile organic compounds (VOCs) in hazardous air pollutants (HAPs) have been regulated by the Air Pollution Control Act (1978) and their atmospheric concentrations have been monitored in 39 monitor sites in Korea. However, measurement standards of volatile organic compounds (VOCs) in HAPs at ambient levels have not been established in Korea. Primary reference gas mixtures (measurement standards) at ambient levels are required for accurately monitoring atmospheric VOCs in HAPs and managing their emissions. In this study, primary reference gas mixtures (PRMs) at 5 nmol/mol were developed in order to establish primary national standards of VOCs in HAPs at ambient levels. Primary reference gas mixtures (PRMs) were prepared in pressurized aluminum cylinders with special internal surface treatment using gravimetric method. Analytical methods using gas chromatography-flame ionization detector (GC-FID) coupled with a cryogenic preconcentrator were also developed to verify the consistency of gravimetrically prepared HAP VOCs PRMs. Three different columns installed in the GC-FID were evaluated and compared for the retention times and separation of eighteen target components in a chromatogram. Results show that the HAP VOCs PRMs at 5 nmol/mol were consistent within a relative expanded uncertainty (k=2) of less than 3 % except acrylonitrile (less than 6 %) and the 18 VOCs were stable for 1 year within their associated uncertainties.

Simple Analytical Method for Acrylamide in the Workplace Air Adsorbed by Charcoal Tube (활성탄관을 사용하여 포집한 작업환경 공기중 아크릴아마이드의 분석법)

  • Yang, J.S.;Lee, M.Y.;Park, I.J.;Kang, S.K.
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • For the ambient monitoring of acrylamide, the adequate condition of sampling and analysis was checked. The adequate adsorbents and desorption solvents were tested. The combination of charcoal tube as a adsorbent and acetone as a desorption solvent showed 87% desorption efficiency. Flame ionization detector was used to detect acrylamide. The detection limit was 0.814 mg acrylamide in 1 L acetone. It is the equivalent concentration of 0.0203 mg acrylamide in $1m^3$ air if the volume of air collected was 40L. The permissible exposure level (PEL) of acrylamide in the workplace air recommended by Occupational Safety and Health Administration (OSHA, USA) is 0.3 mg acrylamide in $1m^3$ air. So, it is very simple and economic analytical method for acrylamide to be set in the industrial hygiene laboratories.

  • PDF

Fragmentation Behavior Studies of Chalcones Employing Direct Analysis in Real Time (DART)

  • Motiur Rahman, A.F.M.;Attwa, Mohamed W.;Ahmad, Pervez;Baseeruddin, Mohammad;Kadi, Adnan A.
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.30-33
    • /
    • 2013
  • Chalcones are naturally occurring, biologically active molecules generating interest from a wide range of research applications including synthetic methodology development, biological activity investigation and studying fragmentation patterns. In this article, a series of chalcones has been synthesized and their fragmentation behavior was studied using modern ambient ionization technique Direct Analysis in Real Time (DART). DART ion source connected with an ion trap mass spectrometer was used for the fragmentation of various substituted chalcones. The chalcones were introduced to the DART source using a glass capillary without sample preparation step. All the chalcones showed prominent molecular ion peaks $[M]^{{\cdot}+}$ corresponding to the structures. Multistage mass spectral data $MS^n$ ($MS^2$ and $MS^3$) were collected for all the chalcones studied. The chalcones with substitutions at 3, 4 or 5 positions gave product ion peaks with the loss of a phenyl radical ($Ph^{\cdot}$) by radical initiated ${\alpha}$-cleavage, while substitution at 2 position of chalcone in the A-ring gave a product ion peak with the loss of substituted styryl radical (PhCH = $CH^{\cdot}$). In case of the chalcones with the substituent at 4 positions in A and B rings gave both types of fragmentation patterns. In conclusion, chalcones can be easily characterized using modern DART interface in very short time and efficiently without any cumbersome sample pretreatment.

Standardizing GC-FID Measurement of Nonmethane Hydrocarbons in Air for International Intercomparison Using Retention Index and Effective Carbon Number Concept

  • Liaw, Sheng-Ju;Tso, Tai-Ly
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.807-814
    • /
    • 1995
  • Accurate measurements of ozone precursors are required to understand the process and extent of ozone formation in rural and urban areas. Nonmethane hydrocarbons (NMHCs) have been identified as important ozone precursors. Identification and quantification of NMHCs are difficult because of the large number present and the wide molecular weight range encountered in typical air samples. A major plan of the research team of the Climate and Air Quality Taiwan Station (CATs) was the measurement of atmospheric nonmethane hydrocarbons. An analytical method has been development for the analysis of the individual nonmethane hydrocarbons in ambient air at ppb (v) and subppb(v) levels. The whole ambient air samples were collected in canisters and analyzed by GC-FID with $Al_2O_3$/KCl PLOT column. Our targeted for quantitative analysis 43 compounds that may be substantial contributors to ozone formation. The retention indices and molar response factors of some commercially available $C_2{\sim}C_{10}$ hydrocarbons were determined and used to identify and quantify air samples. A quality assurance program was instituted to ensure that good measurements were made by participating in the International Nonmethane Hydrocarbon Intercomparison Experiments (NOMHICE).

  • PDF

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung;Mende, Stephen B.;Eastes, Richard W.;Frey, Harald U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.87-98
    • /
    • 2022
  • The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.