• Title/Summary/Keyword: Ambient Temperature

Search Result 2,446, Processing Time 0.028 seconds

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space (유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Park, Joon-Ha;Park, Jum-Ok;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.674-684
    • /
    • 2018
  • The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

Effects of Ginseng By-Products Supplementation on Performance, Blood Biochemical Profiles, Organ Development, and Stress Parameter in Broiler under Heat Stress Condition (인삼 부산물의 첨가 급여가 고온 스트레스 하 육계의 생산성, 혈액조성, 장기발달 및 스트레스 지표에 미치는 영향)

  • Jun-Ho, Lee;Ji-Won, Yoon;Bong-Ki, Kim;Hee-Bok, Park;Kyu-Sang, Lim;Ji-Hyuk, Kim
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.255-264
    • /
    • 2022
  • This study was performed to investigate the effects of dietary supplementation with ginseng by-products on growth, organ development, blood biochemical profiles, immune response, and stress parameter of broilers reared in high ambient temperatures. One hundred one-day-old male chicks (Ross 308) were used. At week two, the birds were randomly allocated into five dietary groups; control (CON), 0.5% ginseng berry (GB1), 1.0% ginseng berry (GB2), 0.5% ginseng leaves and stems (GLS1), and 1.0% ginseng leaves and stems (GLS2). The temperature was maintained at 32±1℃from 9 AM to 5 PM. Growth, serum immunoglobulins and corticosterone levels were monitored and analyzed. No significant differences among groups were observed in growth. However, during the finisher period (21~35d) and overall period (7~35 d), body weight gain in all supplemented groups tended higher than CON group. Blood biochemical profiles did not significantly differ among treatment groups except in bilirubin level. Serum immunoglobulins and corticosterone level showed no significant differences among groups. IgM and IgG levels were numerically higher in GLS1 than in other groups, but the difference was not significant. Corticosterone level also tended lower in all supplemented groups than in CON group, and larger decreases were observed in groups with higher ginseng by-product concentration. In conclusion, dietary supplementation of ginseng by-products shows potential to reduce heat stress in growing broilers with no negative effect on productivity.

Changes of ecological niche in Quercus serrata and Quercus aliena under climate change (갈참나무와 졸참나무의 기후변화에 따른 생태지위 변화)

  • Yoon-Seo Kim;Jae-Hoon Park;Eui-Joo Kim;Jung-Min Lee;Ji-Won Park;Yeo-Bin Park;Se-Hee Kim;Ji-Hyun Seo;Bo-Yeon Jeon;Hae-In Yu;Gyu-Ri Kim;Ju-Seon Lee;Yeon-Jun Kang;Young-Han You
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.205-212
    • /
    • 2023
  • This study was attempted to find out how the ecological niche and interspecies relationship of Quercus aliena and Q. serrata, which are the main constituents of potential natural vegetation along the riverside of mountains in Korea, under climate change conditions. To this end, soil moisture and soil nutrients were treated with 4 grad ients under climate change conditions with elevated CO2 and temperature, plants we re harvested at the end of the growing season, growth responses of traits were measured, ecological niche breadth and overlap were calculated, and it was compared with that of the control group(ambient condition). In addition, the relationship between the two species was analyzed by principal component analysis using trait values. As a result, the ecological niche breadth of Q. aliena was wider than that of Q. serrata under the moisture environment conditions under climate change. Under nutrient conditions, the ecological niche of the two species were similar. In addition, the ecological overlap for soil moisture of Q. aliena and Q. serrata was wider than the soil nutrient gradient under climate change. The species with traits in which the increase in ecological niche breadth due to climate change occurred more than the decrease was Q. aliena in both water and nutrient gradients. And in the responses of the population level, due to climate change, the adaptability of Q. aliena was higher than that of Q. serrata under the soil moisture condition, but the two species were similar under the nutrient condition. These results mean that the competition between the two species occurs more severely in the water environment under climate change conditions, and at that time, Q. aliena has higher adaptability than Q. serrata.

Growth of Cucumber and Tomato Seedlings by Different Light Intensities and CO2 Concentrations in Closed-type Plant Production System (밀폐형 식물생산시스템 내 CO2와 광도에 따른 오이 및 토마토 묘의 생육)

  • Ji Hye Yun;Hyeon Woo Jeong;So Yeong Hwang;Jin Yu;Hee Sung Hwang;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.257-266
    • /
    • 2023
  • This study was conducted to investigate the growth characteristics of cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Dotaerang Dia') seedlings by light intensities and CO2 concentrations in a closed-type plant production system (CPPS). Cucumber and tomato seeds were sown in 50-cell trays and germinated in CPPS at air temperature 25 ± 1℃ and relative humidity 50 ± 10% for 4 days. After germination, the CO2 concentrations and light intensity treatment were treated at 500 (ambient), 1,000, and 1,500 µmol·mol-1 and 100, 200, and 300 µmol·m-2·s-1 photosynthetic photon flux density (PPFD), respectively. The leaf area of cucumber showed the highest value in CO2 1,500 μmol·mol-1. However, the leaf area of the tomato had no significant difference in CO2 concentrations and light intensities treatments. In cucumber and tomato both seedlings, the growth and quality such as compactness and leaf area rate were increased with the increase of light intensity, and there were highest in 300 µmol·m-2·s-1. The root surface and number of root tips of cucumber and tomato seedlings were significantly increased with the increase in light intensity. In conclusion, the regulation of the CO2 concentrations and light intensity can control the growth and quality of cucumber and tomato seedlings in CPPS, especially, increasing the light intensity can improve more significantly the growth and quality of seedlings.