• 제목/요약/키워드: Ambient Air Velocity

검색결과 89건 처리시간 0.027초

경화하는 콘크리트의 수분확산도 모형 (A Moisture Diffusivity Model of Hardening Concrete)

  • 정진훈
    • 한국도로학회논문집
    • /
    • 제7권1호
    • /
    • pp.31-38
    • /
    • 2005
  • 콘크리트의 타설 직후, 상대적으로 콘크리트는 높은 증기압을 갖게 되며, 주위의 대기는 낮은 증기압을 갖게 된다. 콘크리트와 대기 간의 증기압의 평형을 유지하려는 작용 때문에 콘크리트의 표면에서 대기로 수분이 이동하는 증발이 발생한다. 표면에서 일어나는 증발로 인하여 콘크리트의 내부에서도 증기압의 차이가 발생하며, 이로 인하여 콘크리트 내부의 수분이 서서히 표면으로 이동하는 수분확산이 일어난다 이 수분확산의 속도는 콘크리트의 소성 균열, 수화도, 강도와 같은 요인으로 작용하여 콘크리트의 품질에 크게 영향을 미친다. 본 논문에서는 콘크리트 수분확산의 지배방정식과 실내에서 측정된 콘크리트의 온도와 상대습도를 이용하여 초기재령의 콘크리트의 수분확산도를 역계산하였다. 역계산된 콘크리트의 수분확산도를 이용하여 콘크리트의 수분확산도 모형을 개발하였으며, 이를 입력값으로 사용하여 유한요소법에 의해 콘크리트의 상대습도를 계산하였다. 그 결과로서 계산된 상대습도는 측정된 상대습도와 대체로 일치하였다.

  • PDF

고진공하에서의 $MoS_2$ 코팅의 트라이볼로지적 특성 (Tribological Characteristics of MoS$_2$ Coatings in High Vacuum)

  • 권오원;김석삼;이상로
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.409-414
    • /
    • 2000
  • The friction and wear behaviors of MoS$_2$ coatings were investigated by using a pin and disk type tester. The experiment was conducted by using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding velocities in the range of 22-66 ㎜/sec, normal loads varying from 9.8 N to 29.4 N, corresponding to maximum contact pressures of 1.18-2.83 GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

Tribological Characteristics of MoS$_2$Coatings in High Vacuum

  • Kwon, Oh Won;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.91-94
    • /
    • 2000
  • The friction and wear behavior of MoS$_2$coatings was investigated using a pin and disk type tester. The experiment was conducted with silicon nitride as the pin material and MoS$_2$-on-bearing steel as the disk material under different operating conditions that included linear sliding velocities within a range of 2266 mm/sec, normal loads varying from 9.829.4 N, corresponding to maximum contact pressures of 1.782.83 Gpa, and high vacuum, medium vacuum, and ambient air atmospheric conditions. The results showed a low friction coefficient far the coating in a high vacuum, plus the friction coefficient and wear volume increased with an increased normal load. Furthermore, under high load conditions, the friction coefficient and wear volume also increased with an increased sliding velocity.

  • PDF

SI 기관에서 초기 화염의 생성 및 성장에 대한 모델링 (A Modeling of Flame Initiation and Its Development in SI Engines)

  • 송정훈;선우명호
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.288-298
    • /
    • 1999
  • In spark ignited engines, the electrical spark not only sets the time for the onset of combustion but also is able to greatly influence the character of the initial flame growth and the subsequent combustion, and thereby can influence engine performance. The relative importance of the ignition energy is particularly high under lean or high residual gas or exhaust gas recirculation (EGR). In this study, a modeling of flame Initiation and its development is proposed. Submodels consist in representing of cylinder pressure and temperature, heat transfer to cylinder wall, and flame kernel heat transfer to ambient air and to spark plug electrodes. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy, and laminar and turbulent flame velocity.

TBC/CoNiCrAlY 용사코팅의 열싸이클 특성 (Thermal cyclic characteristics of TBC/CoNiCrAlY thermal barrier coatings)

  • 김의현;유근봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.45-47
    • /
    • 2006
  • The rotating components in the hot sections of land-based gas turbine are exposed to severe environments during several tens thousand operation hours at above $1100^{\circ}C$ operation temperature. To protect such components from high temperature oxidation, an intermediate bond coat is applied, typical of a MCrAlY-type metal alloy. This study is concerned with the thermal cyclic behavior of thermal barrier coatings. The MCrAlY bond coatings are deposited by HVOF (High Velocity Oxygen Fuel) method on a nickel-based superalloy (GTD-111). Thermal cyclic tests at $1100^{\circ}C$ in ambient air for various periods of time were used to evaluate the thermal cyclic resistance of the TBC coating. The microstructure and morphology of as-sprayed and of thermal cycled coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

  • PDF

충북 청원군에서 관측된 지표면 부근의 오존 (Measutements of the ground-level ozone in a rural area of Chongwon, Korea)

  • 윤마병;정용승
    • 한국대기환경학회지
    • /
    • 제11권1호
    • /
    • pp.85-93
    • /
    • 1995
  • Measurements of ground level ozone concentrations were made in a rural area of Chongwon (Choongbook Province) from June 1993 to July 1994. High values frequently exceeding 100 ppb (ambient air qualyty standard of Korea) were recorded. High ozone concentrations in the boundary layer were primarily correlated with the several meteorological parameters in warm seasons: pressure, radiation, temperature, precipitation and wind velocity. The annual average concentration of ozone at Chongwon was 17ppb, and this value was relatively higher than those for other cities in Korea. O$\_$3/ concentrations were observed to increase when the ridge of a surface anticyclone was passing over the region, and maximum values(.geq.100 ppb) were observed on the rear sides of high pressure centers and in the warm sectors of cyclones(well head of cold fronts). The ozone concentrations had a negative correlation with the concentration of primary pollutants(e.g., total hydrocarbons).

  • PDF

고진공하에서의 MoS$MoS_2$코팅의 트라이볼로지적 특성 (Tribological Characteristics of $MoS_2$Coatings in High Vacuum)

  • 권오원;채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.94-100
    • /
    • 1999
  • The friction and wear behavior of MoS$_2$Coatings were investigated using a pin and disk type tester. The experiment was conducted using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding speeds in the range of 22~66mm/sec, normal loads varying from 9.8~29.4N, corresponding to maximum contact pressure of 1.78~2.830GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified when running in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

  • PDF

전차선로 해빙시스템의 온도특성 (Temperature Analysis of the De-icing System for Overhead Contact Wire)

  • 고병훈;박영;정호성;권삼영;박현준
    • 한국전기전자재료학회논문지
    • /
    • 제20권11호
    • /
    • pp.1004-1008
    • /
    • 2007
  • The ice coats are built on 25 kV overhead contact wire when the temperature is lower than $0^{\circ}C$. It generates shockwaves at the mechanical interface of the collecting strips of the pantograph and the contact wire. The de-icing processes should be performed to avoid shockwaves which are generated by a pulsed high-voltage arc discharge. This paper presents temperature analysis of the de-icing effects which could be applied to the overhead contact wire of railways using Joule heat. The results show that 350 A is the proper current for $0^{\circ}C$ conductor according to environmental condition such as velocity of air stream, ambient temperature and moisture.

헵탄 풀화재 화염안정성에 관한 산화제 유속 및 농도 효과 (The Effects of Velocity and Concentration in the Oxidizer of Heptane Pool Fires on the Flame Stability)

  • 정태희;이의주
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.309-314
    • /
    • 2012
  • 풀화재에서 화염진동은 주위공기와의 밀도차에 의한 부력효과에 기인하여 주로 발생한다. 본 연구에서는 부력이 지배적인 풀화재의 불안전성에 대하여 산화제유속의 효과를 검토하기 위해 컵버너 실험을 수행하였다. 실험결과는 진동주파수가 산화제의 유속이 증가함에 따라 감소함을 보인다. 무차원 변수로 표현되는 주파수와 부력의 관계로 도시하였을 때 다양한 속도스케일을 사용할 수 있었지만, 연료와 산화제의 유속차로 정의되는 특성속도인 경우에 정지되어 있는 공기중에서의 풀화재 진동과 일치하는 관계식을 얻을 수 있었다. 이러한 사실은 부력이 지배적인 화염에서 불안전성의 원인은 전단면에서의 Kelvin-Helmholtz 불안전성이 주된 기구라는 것을 증명해준다. 산화제의 농도를 변화시켰을 경우에는 산화제의 불활성기체의 농도가 증가할수록 청염의 길이가 길어지고 컵버너 끝단으로부터 부상되는 것이 관찰된다. 또한 진동주파수는 희석율과는 특정한 관계를 보이지 않는데 이는 국부적 화염구조와 연관성을 가지기 때문으로 판단된다.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.