• Title/Summary/Keyword: Amaurobius

Search Result 5, Processing Time 0.018 seconds

Maternal Body-mass Transfer to Offspring in the Matriphagous Spider, Amaurobius ferox (Amaurobiidae)

  • Kim, Kil-Won
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.177-182
    • /
    • 2009
  • The optimal strategy for semelparous females may involve adjustments in the relative investment in two fitness components, the number of offspring and the post-hatching investment per capita. To determine the pattern of maternal resource allocation to offspring in the matriphagous spider, Amaurobius ferox (Amaurobiidae), I investigated the relationship between maternal body-mass and the number of offspring, and quantified the transfer of maternal body-mass to the offspring via different forms of maternal provisioning (trophic egg-laying and matriphagy). There was a positive relationship between female body-mass and the number of offspring. However, Amaurobius mothers did not produce more trophic eggs when they had larger broods. Rather, spiderlings in larger A. ferox broods consumed larger quantities of maternal body-mass via matriphagy. Mothers transferred $28.8{\pm}6.5%$ of their body-mass to the spiderlings via trophic egg-laying, and an estimated $39.0{\pm}12.5%$ of their body-mass was transferred to the spiderlings via matriphagy.

Sex Ratio and Approximate Date of Fertilization of the Subsocial Spider Amaurobius ferox Walckenaer (Araneae: Amaurobiidae)

  • Kim, Kil-Won;Choe, Jae-Chun
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.277-280
    • /
    • 2007
  • Social spiders consistently show highly female-biased sex ratios. However, the sex ratio of subsocial spiders, which have been suggested as an intermediate stage of the evolutionary pathway towards permanent sociality, is generally unknown. We investigated the sex ratio and approximate date of fertilization of the subsocial spider, Amaurobius ferox Walckenaer (Araneae: Amaurobiidae). Investigation over 2 years revealed that sex ratio of A. ferox was consistent across years and averaged 0.49. By early May $(1^{st}{\sim}10^{th})$, 66.6% of female A. ferox observed in the field had already been inseminated, and by late May $(21^{st}{\sim}31^{th})$, 95.4% of females had been inseminated. This result suggests that A. ferox need a long time or cold temperatures to prepare them for reproduction after the developmental attainment of the adult stage.

Comparison of Brood Productions in the Cold-Treated Pairing vs. Not Cold-Treated Pairing in a Stenochronous Spider

  • Kim, Kil-Won
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.145-148
    • /
    • 2009
  • To understand whether experience of cold season in reproductive behaviors in the adults of Amaurobius ferox, the paired adults of a female and a male were exposed under 'cold-treated environment' and 'not cold-treated environment', respectively. I investigated effects of the cold treatment on the brood production of A. ferox. In not cold treatment in which male-female pairs were formed in October at a temperature of $20^{\circ}C$ (${\pm}2^{\circ}C$) and continuously kept under not cold-treated environment, only 3 of 50 pairs successfully reproduced (reproduction was defined as the emergence of spiderlings). In cold treatment where individuals were kept in cold conditions for 3 months prior to pair formation, 57 out of 60 couples succeeded in reproducing. Females which did not experience the low temperature displayed strong aggressiveness toward males. This behavioral inhibition might the primary barrier to copulation of A. ferox that decrease following a period of low temperature. The reproductive inhibition might help the females to allocate the maximum amount of energy in a given environment to reaching the adult stage and to delay reproduction in unfavorable wintering conditions.

Maternal Influence on Spiderlings' Emergence from the Cocoon: Observations in a Subsocial Spider

  • Kim, Kil-Won
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Brood caring behavior was observed in Amaurobius ferox (Araneae, Amaurobiidae), a semelparous subsocial spider, from cocoon construction until the emergence of spiderlings from the cocoon. Unlike most spiders, which emerge from cocoon by their own means, A. ferox mothers intervene in the process of the emergence of their young. I manipulated broods by removing the mother prior to emergence to determine the effects of maternal behavior on the emergence of spiderlings. My results showed that maternal intervention making the cocoon expansion and its exit, is not absolutely necessary for the emergence of A. ferox spiderlings from the cocoon. Nine clutches out of ten were able to get out of the cocoon by their own means without their mother's help. There was no difference between control groups ('with mother') and experimental groups ('without mother') in the number of spiderlings that emerged ($96.9{\pm}25.3$ vs. $90.4{\pm}14.2$, respectfully) and in the time from the beginning to the end of emergence ($36{\pm}12$ vs. $41{\pm}17$ hours). Time from eclosion until the emergence of the first individual in a clutch, however, was greater in the mother-absent group (3.5 days) than in the control group (2.0 days). The construction of the cocoon by the mother required always occurred in the same area within the retreat, and took approximately 6 hours, and the mother guarded the eggs during the incubation period. The emergence of the spiderlings followed a sigmoidal pattern. After emergence, the spiderlings formed a very compact group on the cocoon, which may be important in securing maternal care. The absence of cribellum and calamistrum, structures likely involved in their survival, observed in individuals of the first instar suggests that in the first stage of life, the spiderlings are dependent on their mother.