DOI QR코드

DOI QR Code

Maternal Body-mass Transfer to Offspring in the Matriphagous Spider, Amaurobius ferox (Amaurobiidae)

  • Kim, Kil-Won (Department of Biology, College of Natural Sciences, University of Incheon)
  • Published : 2009.08.31

Abstract

The optimal strategy for semelparous females may involve adjustments in the relative investment in two fitness components, the number of offspring and the post-hatching investment per capita. To determine the pattern of maternal resource allocation to offspring in the matriphagous spider, Amaurobius ferox (Amaurobiidae), I investigated the relationship between maternal body-mass and the number of offspring, and quantified the transfer of maternal body-mass to the offspring via different forms of maternal provisioning (trophic egg-laying and matriphagy). There was a positive relationship between female body-mass and the number of offspring. However, Amaurobius mothers did not produce more trophic eggs when they had larger broods. Rather, spiderlings in larger A. ferox broods consumed larger quantities of maternal body-mass via matriphagy. Mothers transferred $28.8{\pm}6.5%$ of their body-mass to the spiderlings via trophic egg-laying, and an estimated $39.0{\pm}12.5%$ of their body-mass was transferred to the spiderlings via matriphagy.

Keywords

References

  1. Bristowe WS. 1958. The World of Spiders. Collins, London
  2. Cloudsley-Thompson JL. 1955. The life histories of the British cribellate spiders of the genus Ciniflo B!. (Dictynidae). Ann Mag Natur Hist 12: 787-794
  3. Clutton-Brock TH. 1991. The Evolution of Parental Care. Princeton Univ Press, Princeton, New Jersey
  4. Dziminski MA, Vercoe PE, Roberts JD. 2009. Variable offspring provisioning and fitness: a direct test in the field. Function Ecol 23:164-171 https://doi.org/10.1111/j.1365-2435.2008.01480.x
  5. Einum S, Fleming IA. 2000. Highly fecund mothers sacrifice offspring survival to maximize fitness. Nature 405: 565-567 https://doi.org/10.1038/35014600
  6. Evans TA, Wallis EJ, Elgar MA. 1995. Making a meal of mother. Nature 376: 299
  7. Fritz RS, Stampe NE, Halverson TG. 1982. Iteroparity and semelparity in insects. Am Nat 120: 264-268 https://doi.org/10.1086/283987
  8. Futami K, Akimoto SI. 2005. Facultative second oviposition as an adaptation to egg loss in a semelparous crab spider. Ethology III:1126-1138
  9. Gillespie RG. 1990. Costs and benefits of brood care in the Hawaiian happy face spider Theridion grallator (Araneae, Theridiidae). Am Midi Nat 123: 236-243 https://doi.org/10.2307/2426552
  10. Gundermann JL, Hore! A,Krafft B. 1988. Maternal food-supply activity and its regulation in Codotes terrestris (Araneae, Agelenidae). Behaviour 107: 278-296 https://doi.org/10.1163/156853988X00386
  11. Ito C, Shinka A. 1993. Mother-young interactions during the brood-care period in Anelosimus crassipes (Araneae: Theridiidae). Acta Arachnol 42: 73-81 https://doi.org/10.2476/asjaa.42.73
  12. Kessler A. 1971. Relation between egg production and food consumption in species of the genus Pardosa (Lycosidae, Araneae) under experimental conditions of food-abundance and food-shortage. Oecologia 8: 93-109 https://doi.org/10.1007/BF00345629
  13. Kim KW. 2000. Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behav Ecol Sociobiol 48:182-187 https://doi.org/10.1007/s002650000216
  14. Kim KW. 2001. Social facilitation of synchronized molting behavior in the spider Amaurobius ferox (Araneae, Amaurobiidae). J Insect Behav 14: 401-409 https://doi.org/10.1023/A:1011179531156
  15. Kim KW. 2009. Changes in foraging behaviors during the maternal period in a subsocial spider. Sociobiology. (in press)
  16. Kim KW, Hore! A. 1998. Matriphagy in the spider Amaurobius ferox (Araneidae, Amaurobiidae): an example of mother-offspring interactions.Ethology 104: 1021-1037 https://doi.org/10.1111/j.1439-0310.1998.tb00050.x
  17. Kim KW, Roland C.2000. Trophic egg laying in the spider, Amaurobius ferox: mother-offspring interactions and functional value. Behav Processes 50: 31-42 https://doi.org/10.1016/S0376-6357(00)00091-7
  18. Kim KW, Krafft B, Choe Jc. 2005. Cooperative prey capture by young subsocial spiders: II. Behavioral mechanism. Behav Ecol Sociobiol 59: 101-107 https://doi.org/10.1007/s00265-005-0014-y
  19. Lazarus J, Inglis IR. 1986. Shared and unshared parental investment, parent-offspring conflict and brood size. Anim Behav 34: 1791-1804 https://doi.org/10.1016/S0003-3472(86)80265-2
  20. Lemasle A. 1977. Etude pr\acute{e}liminaire \acute{a} la biologie et \acute{a} \acute{e}thologie desaraign\acute{e}es du genre Amaurobius. PhD thesis, Univ Nancy I, France
  21. Li D, Jackson RR, Barrion AT. 1999. Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae). J Zool 247: 293-310 https://doi.org/10.1111/j.1469-7998.1999.tb00993.x
  22. Marshall SD, Gittleman J1. 1994. Clutch size in spiders: is more better? Function Ecol 8: 118-124 https://doi.org/10.2307/2390120
  23. Opell BD. 1994. The ability of spider cribellate prey capture thread to hold insects with different surface features. Function Ecol 8: 145-150 https://doi.org/10.2307/2389897
  24. Salomon M, Schneider JM, Lubin Y. 2005. Maternal investment in a spider with suicidal maternal care, Stegodyphus lineatus (Araneae,Eresidae). OIKOS 109: 614-622 https://doi.org/10.1111/j.0030-1299.2005.13004.x
  25. SAS Institute. 1999. StatView user's manual, version 5.0. SAS Institute Inc, Cary, North Carolina
  26. Schneider JM. 1995. Survival and growth in groups of a subsocial spider (Stegodyphus lineatus). Insect Soc 42: 237-248 https://doi.org/10.1007/BF01240418
  27. Simpson MR. 1995. Covariation of spider egg and clutch size: the influence of foraging and parental care. Ecology 76: 795-800 https://doi.org/10.2307/1939345
  28. Skow CD, Jakob EM. 2003. Effects of maternal body size on clutch size and egg weight in a Pholcid spider (Holocnemus pluchei). J Arachnol 31: 305-308 https://doi.org/10.1636/01-85
  29. Smith CC, Fretwell SD. 1974. The optimal balance between size and number of offspring. Am Nat 108: 499-506 https://doi.org/10.1086/282929
  30. Steams SC. 1992. Evolution of Life Histories. Oxford Univ Press
  31. Suhm M, Thaler K, Alberti G. 1996. Glands in the male palpal organ and the origin of the mating plug in Amaurobius species (Araneae:Amaurobiidae). Zool Anz 234: 191-199
  32. Tahiri A, Hore! A, Krafft B. 1989. Etude preliminaire sur les interactions mere-jeunes et jeunes-jeunes chez deux especes d'Amaurobius (Araneae, Amaurobiidae). Rev Arachnol 8: 115-128
  33. Tallamy DW, Brown WP. 1999. Seme!parity and the evolution of maternal care in insects. Anim Behav 57: 727-730 https://doi.org/10.1006/anbe.1998.1008
  34. Toyama M. 2003. Relationship between reproductive resource allocation and resource capacity in the matriphagous spider, Chiracanthium japonicum (Araneae: Clubionidae). J Ethol 21: 1-7
  35. Trivers RL. 1972. Parental investment and sexual selection. In Sexual Se!ection and the Descent of Man (Campbell B, ed). Chicago, Aldine, pp 136-179
  36. Walker SE, Rypstra AL, 'Marshall SD. 2003. The relationship between offspring size and performance in the wolf spider Hogna helluo (Araneae: Lycosidae). Evol Ecol Res 5: 19-28
  37. Ward D, Lubin Y. 1993. Habitat selection and the life history of a desert spider, Stegodyphus lineatus (Eresidae). J Anim Ecol 62: 353-363 https://doi.org/10.2307/5366