• Title/Summary/Keyword: Alveolar gas

Search Result 34, Processing Time 0.037 seconds

Increase In Mean Alveolar Pressure Due To Asymmetric Airway Geometry During High Frequency Ventilation

  • Cha, Eun-J.;Lee, Tae-S.;Goo, Yong-S.;Song, Young-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.89-96
    • /
    • 1993
  • During high frequency ventilation (HFV), mean alveolar pressure has been measured to increase with mean airway opening pressure controlled at a constant level in both humans and experimental animals. Since this phenomenon could potentiate barotrauma limiting advantages of HFV, the present study theoretically predicted the difference between menu alveolar and airway opening pressures ($MP_{alv}$). In a Weibel's trumpet airway model, approximated formula for $MP_{alv}$ was derived based on momentum conservation assuming a uniform velocity profile. The prediction, equation was a func pion of gas density($\rho$), mean flow rate(Q), and diameter of the airway opening where the pressure measurement was made($D_0$) : $MP_{alv}=4{\rho}(Q/D_0^{2})^2$. This was a result of the difference in crosssectional area between the alveoli and the airway opening. A simple aireway model experiment was performed and the results well fitted to the prediction, which demonstrated the validity of the present analysis. Previously reported $MP_{alv}$ data from anesthetized dogs in supine position were comparable to the predicted values, indicating that the observed dissociation between mean alveolar and airway opening pressures during HFV can be explained by this innate geometric (or cross-sectional area) asymmetry of the airways. In lateral position, however, the prediction substantially underestimated the measurements suggesting involvement of other important physiological mechanisms.

  • PDF

Cytokines Stimulate Lung Epithelial Cells to Release Nitric Oxide

  • Robbins, Richard A.;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.447-454
    • /
    • 1995
  • Cytokine release from alveolar macrophages and subsequent interaction of these cytokines with the bronchial epithelium can induce epithelial cells to release inflammatory mediators. Nitric oxide(NO), a highly reactive gas formed from arginine by nitric oxide synthase(NOS), is known to be involved in inflammation and edema formation, and the inducible form of NOS(iNOS) can be increased by cytokines. In this context, we hypothesized that lung epithelial cells could be stimulated by cytokines released by alveolar macrophages to express iNOS. To test this hypothesis, the murine lung epithelial cell line, LA-4, or the human lung epithelial cell line, A549, were stimulated with culture supernatant fluids from alveolar macrophages. NO production was assessed by evaluating the culture supernatant fluids for nitrite and nitrate, the stable end products of NO. Both murine and human cell culture supernatant fluids demonstrated an increase in nitrite and nitrate which were time- and dose-dependent and attenuated by $TNF{\alpha}$ and IL-$1{\beta}$ antibodies(p<0.05, all comparisons). Consistent with these observations, cytomix a combination of $TNF{\alpha}$, IL-$1{\beta}$, and $\gamma$-interferon, stimulated the lung epithelial cell lines as well as primary cultures of human bronchial epithelial cells to increase their NO production as evidenced by an increase in nitrite and nitrate in their culture supernatant fluids, an increase in the iNOS staining by immunocytochemistry, and an increase in iNOS mRNA by Northern blottin(p<0.05, all comparisons). The cytokine effects on iNOS were all attenuated by dexamethasone. To determine if these in vitro observations are reflected in vivo, exhaled NO was measured and found to be increased in asthmatics not receiving corticosteroids. These data demonstrate that alveolar macrophage derived cytokines increase iNOS expression in lung epithelial cells and that these in vitro observations are mirrored by increased exhaled NO levels in asthmatics. Increased NO in the lung may contribute to edema formation and airway narrowing.

  • PDF

Effects of Red Koji-Fermented Bupleuri Radix Extracts on Lipopolysaccharide-Induced Rat Acute Lung Injury (홍국발효 시호(柴胡)가 Lipopolysaccharide로 유발된 급성 폐 손상에 미치는 영향)

  • Seo, Young-ho;Jung, Tae-young;Kim, Jong-dea;Choi, Hae-yun
    • 대한상한금궤의학회지
    • /
    • v.13 no.1
    • /
    • pp.21-44
    • /
    • 2021
  • Objective : This study aimed to assess the preventive effect of Bupleuri Radix aqueous extracts (BR) and red koji-fermented BR (fBR) in lipopolysaccharide (LPS)-induced acute lung injury in a rat model. Methods : Rats were administered 30, 60, or 120 mg/kg/day of fBR for 28 days before LPS treatments. All rats were sacrificed 5 h after LPS treatment (500 ㎍/head, intratracheal instillation). Body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, partial pressure [Pa] of O2, PaCO2), bronchoalveolar lavage fluid (BALF) protein, lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), total cell numbers, neutrophil/alveolar macrophage ratios, lung malondialdehyde (MDA), and myeloperoxidase (MPO) were measured. In addition, histopathological changes including the luminal surface of alveoli (LSA), thickness of alveolar septum, and number of polymorphonuclear neutrophils (PMNs) were checked. Results : LPS injection led to increases in lung weights, pulmonary transcapillary albumin transit, BALF protein, LDH, TNF-α and IL-1β contents, total cells, neutrophil and alveolar macrophage ratios, lung MDA, MPO, alveolar septum thickness, and PMNs, and decreases in PaCO2 and pH of arterial blood and LSA. However, these LPS-induced acute lung injuries were inhibited by pretreatment of 30, 60, and 120 mg/kg of fBR. The most favorable effects were seen with 30 mg/kg fBR as compared with 60 mg/kg of α-lipoic acid and BR. Conclusions : fBR showed preventive effects on LPS-induced acute lung injury, which resembles acute respiratory distress syndrome. The mechanisms of action were likely via antioxidant and anti-inflammatory means.

Expressions of Laminin-1 in Lung Alveolar Septa after CS gas Exposure in Rats (CS 가스 흡입이 흰쥐의 폐포막내 Laminin-1에 미치는 영향)

  • Chon, Soon-Ho;Paik, Doo-Jin;Lee, Chul Burm;Kim, Hyuck;Chung, Won Sang;Kim, Young Hak;Kang, Jung Ho;Jee, Heng Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.4
    • /
    • pp.397-405
    • /
    • 2005
  • Background : Laminin-1 is known to have regular functions in the development and course of differentiation of the lungs. The morphogenesis and distribution of laminin-1 still remains as a mystery and its distribution and changes in the molecular structure of laminin-1 in the pathogenesis of the lung still is a subject of great controversy. In this study, experiments were done to delineate the distribution and changes in the amount of laminin-1 after inducing inflammation of the lungs by exposing experimental animals to CS gas and especially, to find compositions of laminin-1 within type II pneumocytes. Materials and Methods : The experimental subjects of study were newborn rats and the extracted tissue from the experimental rats were viewed under light microscope and electron microscope after the sections were treated with immunohistochemical methods and immunogold reaction methods using bounded gold particles. Results : 1) Lymphocytes and mononuclear phagocytes invaded the alveolar septa in the 2 day group rats after CS gas exposure and intense interstitial inflammation was seen in the 3 day group. 2) Laminin immunoreactions decreased to a moderate degree in the 2 and 3 day group rats after CS gas exposure and strong laminin immunoreactions were seen again in the 5 and 7 day group rats. 3) Gold particles in basal lamina of the lung blood-air barrier decreased and in the type I pneumocytes decreased in the 2 and 3 day group rats after CS gas exposure. 4) Gold particles were seen only on the surface of the cell membranes of type II pneumocytes of the 1 and 2 day group rats after CS gas exposure. 5) Few gold particles around the lamellar bodies and cytoplasm of type II pneumocytes in the control rat group and at 12 hours after CS gas exposure. Gold particles are seen only on the surface of type II pneumocytes of the 1 and 2 day group rats after CS gas exposure and are evenly distributed in small amounts in the cells of the 3 day group after CS gas exposure. Conclusion : CS gas exposure in the rats caused inflammation of lung alveolar septa and also induced a decrease in laminin-1 in basal lamina and loss of laminin-1 in the cytoplasm of type II pneumonocytes. As the inflammatory cells disappeared, an increase in the distribution of laminin-1 occurred. This reflects tissue regeneration functions of laminin-1 in the pneumocytes of rats and the distribution of laminin-1 in type II pneumocytes can be seen through the electron microscope using immunogold methods.

The Effect and Safety of Alveolar Recruitment Maneuver using Pressure-Controlled Ventilation in Acute Lung Injury and Acute Respiratory Distress Syndrome (급성폐손상과 급성호흡곤란증후군 환자에서 압력조절환기법을 이용한 폐포모집술의 효과와 안정성)

  • Chung, Kyung Soo;Park, Byung Hoon;Shin, Sang Yun;Jeon, Han Ho;Park, Seon Cheol;Kang, Shin Myung;Park, Moo Suk;Han, Chang Hoon;Kim, Chong Ju;Lee, Sun Min;Kim, Se Kyu;Chang, Joon;Kim, Sung Kyu;Kim, Young Sam
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.5
    • /
    • pp.423-429
    • /
    • 2007
  • Background: Alveolar recruitment (RM) is one of the primary goals of respiratory care for an acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The purposes of alveolar recruitment are an improvement in pulmonary gas exchange and the protection of atelectrauma. This study examined the effect and safety of the alveolar RM using pressure control ventilation (PCV) in early ALI and ARDS patients. Methods: Sixteen patients with early ALI and ARDS who underwent alveolar RM using PCV were enrolled in this study. The patients data were recorded at the baseline, and 20 minutes, and 60 minutes after alveolar RM, and on the next day after the maneuver. Alveolar RM was performed with an inspiratory pressure of $30cmH_2O$ and a PEEP of $20cmH_2O$ in a 2-minute PCV mode. The venous $O_2$ saturation, central venous pressure, blood pressure, pulse rate, $PaO_2/FiO_2$ ratio, PEEP, and chest X-ray findings were obtained before and after alveolar RM. Results: Of the 16 patients, 3 had extra-pulmonary ALI/ARDS and the remaining 13 had pulmonary ALI/ARDS. The mean PEEP was 11.3 mmHg, and the mean $PaO_2/FiO_2$ ratio was 130.3 before RM. The $PaO_2/FiO_2$ ratio increased by 45% after alveolar RM. The $PaO_2/FiO_2$ ratio reached a peak 60 minutes after alveolar RM. The Pa$CO_2$ increased by 51.9 mmHg after alveolar RM. The mean blood pressure was not affected by alveolar RM. There were no complications due to pressure injuries such as a pneumothorax, pneumomediastinum, and subcutaneous emphysema. Conclusion: In this study, alveolar RM using PCV improved the level of oxygenation in patients with an acute lung injury and acute respiratory distress syndrome. Moreover, there were no significant complications due to hemodynamic changes and pressure injuries. Therefore, alveolar RM using PCV can be applied easily and safely in clinical practice with lung protective strategy in early ALI and ARDS patients.

Heat Effects for the Volatile Organic Compounds emitted from Garlic and Kimchee (열처리가 마늘과 김치에서 발생되는 휘발성 유기화합물에 미치는 영향)

  • 김병순;양성봉
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.615-622
    • /
    • 1998
  • The volatile organic compounds(VOCs) emitted from raw garlic and Kimchee were analyzed with thermal desorption or purge & trap/gas chromatography/mass selective detection method. Very offensive compounds such as methyl allyl sulfide, dimethyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, diallyl disulfide and dimethyl trisulfide were detected, and among them, dimethyl disulfide and dimethyl trisulfide were confirmed to be generated during the precocity of Kimchee or emitted from the stuff of Kimchee other than the garlic. Malodorous compounds emitted from the garlic or Kimchee were detected in the breath of a Korean and the refregirator keeping Kimchee. It was confirmed that the disufides emitted from the garlic or Kimchee were major components of offensive odor in the alveolar air and the refregirator. It was clarfied that heat process is very effective to reduce odorous VOCs in garlic or Kimchee.

  • PDF

Effects of Red-Koji Fermented Scutellariae Radix Extracts on Lipopolysaccharide-induced Rat Acute Lung Injury (홍국발효 황금이 Lipopolysaccharide 유발 급성 폐손상에 미치는 영향)

  • Kim, Koang Lok;Kwon, Kyoung Man;Yun, Yong Jae;Lee, Young Jun;Park, Dong Il;Kim, Jong Dae;Jung, Tae Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.874-885
    • /
    • 2012
  • In the present study, the possibility of whether the pharmacological effects of Scutellariae Radix Aqueous Extracts(SR) were favorably changed by report that lipopolysaccharide(LPS)-induced rat acute lung injury was treated with Red-Koji(Monascus purpureus 12002) fermentation. Three different dosages of Red-Koji fermented SR extract(fSR), 125, 250 and 500 mg/kg were orally administered once a day for 28 days before LPS(Escherichia coli 0111:B4) treatments, and then 5 hours after LPS treatment(500 ${\mu}g$/head, intra trachea instillation), all rats were sacrificed. Changes in the body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters(pH, $PaO_2$ and $PaCO_2$) bronchoalveolar lavage fluid(BALF) protein, lactate dehydrogenase(LDH) and proinflammatory cytokine tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-$1{\beta}$(IL-$1{\beta}$) contents, total cell numbers, neutrophil and alveolar macrophage ratios, lung malondialdehyde(MDA), myeloperoxidase(MPO), proinflammatory cytokine TNF-${\alpha}$ and IL-$1{\beta}$ contents were observed with histopathology of the lung, changes on luminal surface of alveolus(LSA), thickness of alveolar septum, number of polymorphonuclear neutrophils(PMNs). As results of LPS-injection, dramatical increases in lung weights, pulmonary transcapillary albumin transit increases in $PaCO_2$, decreases in pH of arterial blood and $PaO_2$, increases of BALF protein, LDH, TNF-${\alpha}$ and IL-$1{\beta}$ contents, total cells, neutrophil and alveolar macrophage ratios, lung MDA, MPO, TNF-${\alpha}$ and IL-$1{\beta}$ contents increases were detected with decreases in LSA and increases of alveolar septum and PMNs numbers, respectively as compared with intact control. Especially fSR 125 mg/kg showed quite similar favorable effects on the LPS-induced acute lung injuries as compared with 60 mg/kg of ${\alpha}$-lipoic acid and 250 mg/kg of SR. The results suggest that over 125 mg/kg of fSR extracts showed favorable effects on the LPS-induced acute lung injury mediated by their antioxidant and anti-inflammatory effects. Moreover, increases of the pharmacological effects of SR on LPS-induced acute lung injury were observed by Red-Koji fermentation in this study, at least 2-fold higher.

Effects of Lonicerae Flos Extracts on LPS-induced Acute Lung Injury (금은화가 LPS로 유발된 급성 폐 손상에 미치는 영향)

  • Yi, Chang-Geon;Choi, Hae-Yun;Park, Mee-Yeon;Kim, Jong-Dae
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.49-69
    • /
    • 2011
  • Objective : The object of this study was to observe the effects of Lonicerae Flos (LF) aqueous extracts on lipopolysaccharide (LPS)-induced rat acute lung injury. Method : Five different dosages of LF extracts were orally administered once a day for 28 days before LPS treatments, and then all rats were sacrificed after 5 hour-treatment of LPS. Eight groups of 16 rats each were used in the present study. The following parameters caused by LPS treatment were observed ; body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, $PaO_2$ and $PaCO_2$) bronchoalveolar lavage fluid (BALF) protein lactate dehydrogenase (LDH), and proinflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) contents, total cell numbers, neutrophil and alveolar macrophage ratios, lung malondialdehyde (MDA), myeloperoxidase (MPO), proinflammatory cytokines TNF-${\alpha}$ and IL-$1{\beta}$ contents. In addition, the histopathologic changes were observed in the lung in terms of luminal surface of alveolus, thickness of alveolar septum, number of polymorphonuclear neutrophils. Result : As results of LPS-injection, dramatical increases in lung weights, pulmonary transcapillary albumin transit increases, increases in $PaCO_2$, decreases in pH of arterial blood and $PaO_2$, increases of BALF protein, LDH, TNF-${\alpha}$ and IL-$1{\beta}$ contents, total cells, neutrophil and alveolar macrophage ratios, TNF-${\alpha}$ and IL-$1{\beta}$ contents increases were detected with decreases in LSA and increases of alveolar septum and PMNs numbers, respectively as compared with intact control. These are means that acute lung injuries (resembling acute respiratory distress syndrome) are induced by treatment of LPS mediated by inflammatory responses, oxidative stress and related lipid peroxidation in the present study. However, these LPS-induced acute lung injuries were inhibited by 28 days continuous pretreatment of 250 and 500mg/kg of LF extracts. Because of lower three dosages of LF treated groups, 31.25 and 62.5 and 125mg/kg did not showed any favorable effects as compared with LPS control, the effective dosages of LF in LPS-induced acute lung injuries in the present study, is considered as about 125mg/kg. The effects of 250mg/kg of LF extracts showed almost similar effects with ${\alpha}$-lipoic acid 60mg/kg in preventing LPS-induced acute lung injuries. Conclusion : It seems that LF play a role in protecting the acute respiratory distress syndrome caused by LPS.

Effect Oxygen in Inflation Gas for Warm Ischemia-reperfusion Injury in the Lung of a Mongrel Dog (황견에서 폐장의 산소가 온열 허혈후 재관류 시폐손상에 미치는 영향)

  • 성숙환;김현조;김영태
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Background: Hyperinflation during lung ischemia has been known to improve pulmonary functions after reperfusion which may be exerted through a pulmonary vasodilation and avoidance of atelectasis by an increased surfactant release and been known whether the improvement of pulmonary function was the effect of hyperinflation itself or the oxygen content in inflation gas. Therefore we attempted to clarify the effect of hyperinflation with oxygen in pulmonary inflation gas during warm ischemia on pulmonary function after reperfusion to solve the problem of ischemia-reperfusion injury after lung transplantation. Material and Method: sixteen mongrel dogs were randomly divided into two groups: the left lung was inflated to 30-35 cm H2O with 100% oxygen in oxygen group and 100% nitrogen in nitrogen group. The inflated left lung was maintained with warm ischemia for 100 minutes. Arterial and mixed venous blood gas analysis and hemodynamics were measured before ischemia and 30, 60, 120, 180 and 240 minutes afer reperfusion. Lung biopsy was taken for the measurement of lung water content after the end of reperfusion. Result: In oxygen group arterial oxygen tension the difference of arterial and mixed venous oxygen tension and the difference of alveolar-arterial oxygen tension at 30-minute after reperfusion were not significantly different from those before ischemia and were stable during the 40hour reperfusion. However in nitrogen group these values were significantly deteriorated at 30-minute after reperfusion. there was no significant difference between two groups in hemodynamic data peak airway pressure and lung water content. Conclusion : The results indicated that the oxygenation one of the most important pulmonary functions was improved by pulmonary inflation with 100% oxygen during warm ischemia but the hemodynamics were not. Oxygen as a metabolic substrate during warm ischenia was believed to make the pulmonary tissues to maintain aerobic metabolism and to prevent ischemic damage of alveoli and pulmonary capillary.

  • PDF

Awareness during general anesthesia despite simultaneous bispectral index and end-tidal anesthetic gas concentration monitoring

  • Lee, Jungwon;Park, Chorong;Kim, Saeyoung
    • Journal of Yeungnam Medical Science
    • /
    • v.36 no.1
    • /
    • pp.50-53
    • /
    • 2019
  • Awareness during general anesthesia occurs in approximately 0.1-0.2% of cases; nevertheless, particular attention is required because it can lead to critical complications including insomnia, depression, anxiety, and post-traumatic stress disorder. To prevent these complications, bispectral index (BIS) and end-tidal anesthetic gas (ETAG) concentration monitoring are commonly used to examine patient consciousness during surgery. In the present case, an 80-year-old man was scheduled for total gastrectomy. Anesthesia was maintained using desflurane 4.0-5.0% vol, oxygen, and nitrous oxide. The authors simultaneously monitored BIS, which was maintained between 37 and 43, and ETAG, which was maintained between 0.9 and 1.2 minimum alveolar concentration (MAC). After the operation, however, the authors were surprised to learn that the patient complained of awareness during anesthesia. Although BIS and ETAG concentration monitoring are useful in preventing awareness during anesthesia, they cannot be completely trusted. Even though BIS was maintained at approximately 40 and ETAG at 0.7-1.3 MAC, awareness during anesthesia occurred.