• Title/Summary/Keyword: Alveolar cells

Search Result 418, Processing Time 0.029 seconds

Phagocytic osteoclasts in the alveolar bone of diabetic rats with periodontitis

  • Bak, Eun-Jung;Kim, Ae Ri;Kim, Ji-Hye;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.92-98
    • /
    • 2020
  • Periodontitis is a bacteria-induced inflammatory disease associated with alveolar bone loss. Osteoclast is a macrophage-lineage cell that exhibits phagocytic activity; however, osteoclast phagocytic activity has not been demonstrated under pathological conditions. Diabetes is a pathological condition that exacerbates alveolar bone loss via periodontitis; therefore, we examined phagocytic osteoclasts in diabetic rats that had periodontitis. The rats were divided into the control (C), periodontitis (P), and diabetes with periodontitis (DP) groups. Diabetes and periodontitis were induced by streptozotocin injection and ligature of the mandibular first molars, respectively. On days 3 and 20 after the ligature, the rats were sacrificed, and osteoclasts containing inclusions were quantified by tartrate-resistant acid phosphatase staining. On day 3, there were more osteoclasts containing inclusions in the DP group than in the C group. Among inclusions, osteocyte-like cells and dense bodies were more frequently observed in the DP group than in the C group. Cytoplasm-like structures were elevated more in the DP group than in the C and P groups. However, no differences were observed on day 20. Interestingly, some osteoclasts were in contact with the osteocytes within the exposed lacunae and contained several inclusions within a large vacuole. Thus, the elevation of phagocytic osteoclasts in rats with diabetes and periodontitis provides insight into the role of osteoclast phagocytic activity under pathological conditions.

Protective Effect of HP08-0106 on Ligature-induced Periodontitis in Rats

  • Choi, Hwa-Jung;Cho, Hyoung-Kwon;Soh, Yun-Jo
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.187-194
    • /
    • 2011
  • Periodontitis is an inflammatory disorder of the periodontium, characterized by destruction of the tooth supporting tissues including alveolar bone and mediated by various pro-inflammatory mediators. Here, we demonstrated that HP08-0106, composed of four crude drugs-Gardenia jasminoides Grandiflora, Angelica gigas Nakai, Rehmannia glutinosa, and Schizonepeta tenuifolia in a weight ratio of 2:2:1:2, perturbs inflammatory responses, osteoclast formation in LPS-induced RAW 264.7 cells and alveolar bone resorption in ligature-induced periodontitis. HP08-0106 decreased the protein level of iNOS and COX2 as well as the secreted level of IL-$1{\beta}$, indicating that HP08-0106 has antiinflammatory effects. HP08-0106 also inhibited the expression of genes associated with osteoclastogenesis including c-Fos, MMP-9 and TRAP. Moreover, HP08-0106 exhibited a protective effect from alveolar bone loss in ligature-induced periodontitis animal models. Our results strongly suggest that HP08-0106 represent an important therapeutic tool to treat inflammatory disorders associated with bone loss such as periodontitis.

Inhibitory effects of the steamed radix of Rehmanniae glutinosa against ligature-induced periodontitis (숙지황(熟地黃) 추출물의 치주염 개선 효과 연구)

  • Hee Kyung Baek;Mi Hye Kim;Woong Mo Yang
    • Journal of Convergence Korean Medicine
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • Objectives : The purpose of this study was to investigate the anti-inflammatory effects of the aqueous extract of the steamed radix of Rehmanniae glutinosa (SRG) on periodontitis in ligature-induced rat model. Methods: To induce the periodontitis, ligature was placed around the lower first molar in rats. Rats were divided into 4 groups (n = 7), NL (non-ligatured and vehicle-treated), L (ligatured and vehicle-treated), SRG1 (ligatured and 1 mg/kg SRG-treated) and SRG100 (ligatured and 100 mg/kg SRG-treated). Vehicle or SRG solution was applied daily for 14 days and then all experimental rats were sacrificed. To examine the effect of SRG solution on periodontitis, the level of alveolar bone loss, cementum regeneration, gingival tissue degradation, and osteoclast cell numbers were analyzed. Results: Alveolar bone loss was inhibited in ligature-induced periodontitis rats treated with SRG treatment. Histopathological cementum was recovered in SRG1 and SRG100 groups. SRG extract inhibited gingival tissue degradation induced by ligature. In addition, the numbers of osteoclast cells were decreased by treatment SRG in periodontitis rats. Conclusion: Taken together, these results suggest that SRG have inhibitory effects against periodontitis. Therefore, the steamed radix of Rehmanniae glutinosa has may be a potential alternative for periodontitis.

Ultrastructural Study on the Poison Secreting Organ of the Spider (거미류 독액(毒液) 분필기관(分泌器官)의 미세구조(微細構造)에 관한 연구(硏究))

  • Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.128-142
    • /
    • 1992
  • Ultrastructure of the poison secreting organ in the spiders, Agelena limbata Thorell and Nephila clavata L. Koch were studied using scanning and transmission electron microscopes. The venom glands located its secretory sac portion in cephalothorax and excretory duct in the fang of chelicera are one pair of simple alveolar glands composed of three kinds of basic tissues-outer spiral musculature, middle myoepithelium and inner glandular epithelium. The muscle cells of the venom gland junctioned with the motor nerve endings at neuromuscular contact area are composed of smooth muscle fibers, whereas the myoepithelial cells between the musculature and inner glandular epithelium have compact collagenous fibers within the cytoplasm. The glandular epithelial cells which arranged along the concentrical location are subdivided into basal light cells and apical dark cells according to electron densities of their cytoplasms.

  • PDF

The Effects of Mycobacterium Tuberculosis on Alveolar Macrophages -The Alterations of Superoxide Production in both Human and Rat Alveolar Macrophages Exposed to Mycobacterium Tuberculosis H37Ra Strain- (결핵균이 폐포대식세포의 기능에 미치는 영향에 관한 연구 -H37Ra 결핵균종에 의한 사람 몇 백서 폐포대식세포의 Superoxide 생성의 변화-)

  • Kim, Keon-Youl;Lee, Kye-Young;Hyun, In-Kyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.6
    • /
    • pp.526-535
    • /
    • 1992
  • Background: The oxygen radicals released by alveolar macrophages contribute to killing of microorganisms including M. tuberculosis. Macrophages are "primrd" for enhanced oxygen radical release by macrophage activator like IFN-$\gamma$ and LPS, which do not themselves cause release of oxygen radicals. Actural production of oxygen radicals is "triggered" by phagocytosis or by exposure to chemical stimuli like PMA or FMLP. There has been debates about the priming effect of alveolar macro phages because they are exposed to usual environmental particles unlike blood monocytes. Therefore we examined priming effect of IFN-$\gamma$ in human alveolar macrophages comparing with that in blood monocytes and rat alveolar macrophages. And we observed the alterations of superoxide production in both human and rat alveolar macrophages after exposure to M. tuberculosis H37Ra bacilli itself and its lysate. Methods: Bronchoalveolar lavage fluid was processed to isolate alveolar macrophages by adherence and the adherent cells were removed by cold shock method. After exposure to M. tuberculosis H37Ra strain, alveolar macrophages were incubated for 24 hours with IFN-$\gamma$. The amount of superoxide production stimulated with PMA was measured by ferricytochrome C reduction method. Results: 1) The priming effect in human alveolar macrophages was not observed even with high concentration of IFN-$\gamma$ while it was observed in blood monocytes and rat alveolar macrophages. 2) Both human and rat alveolar macrophages exposed to avirulent H37Ra strain showed triggering of superoxide release and similar results were shown with the exposure to H37Ra lysate. Conclusion: The priming effect in human alveolar macrophages is not observed because of its usual exposure to environmental particles and avirulent H37Ra strain does not inhibit the activation of alveolar macrophages.

  • PDF

Cytotoxicity of paraquat and compensatory effects of 3-methylcholanthrene in rat lung (Paraquat의 세포독성과 흰쥐의 폐에서 3-Methylcholanthrene의 독성경감효과)

  • Rim, Yo-Sup;Kim, Doc-Soo;Han, Du-Seok;Hwang, In-Taek
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.2
    • /
    • pp.96-104
    • /
    • 2002
  • This study was carried out to investigate cytotoxicity of paraquat on NIH 3T3 fibroblasts, toxicity of paraquat and compensatory effects of 3-methylcholanthrene (3-MC) on the rat lung. In order to conduct MIT [3-(4,5-Dimethylthiazol-2-yl) -2,5-diphenyl -2H-tetrazolium-bromide] and NR (Neutral red) assay, the $5.0{\times}10^4cell/ml$ of NIH 3T3 fibroblast in each well of 24 multi-dish were cultured. After 24 hours, the cells were treated with solution of paraquat (1, 25, 50 and $100{\mu}M$ respectively). After the NIH 3T3 fibroblast of all groups were cultured in same condition for 48 hours. MIT and NR assay were performed to evaluate the cytotoxicity of cell organelles. $MTT_{50}\;and\;NR_{50}$ of paraquat were $1668.97{\mu}M\;and\;1030.85{\mu}M$, respectively. These $IC_{50}$ of Paraquat were decided as a low cytotoxicity by Borenfreund and Puemer (1984). In order to observe the toxicity and compensatory effects of paraquat on the rat lung, Spraque Dawley male rats were used as experimental animals and were divided into paraquat only treated group and simultaneous application group of paraquat and 3-MC, at 30 min and 1, 3, 6, 12, 24, 48 and 96 hrs interval after each treatment. The animals were sacrificed by decapitation and their or the lungs were immediately removed, immersed in fixatives, and were processed with routine method for light microscopic study. Paraffin sections were stained with H&E and iron hematoxylin of Verhoeff. Under the light microscopy, erythrocytes were full in alveolar capillaries at 3 hrs and congested at 24 hrs after paraquat administration. The great alveolar cells (Type II cell) were increased and mitosis of great alveolar were observed in interalveolar septa. Many lymphocytes, macrophages and polymorphonuclear (PMN) cells were observed in connective tissue surrounding lung tissue and germinal center in lymph follicles of terminal bronchiole. Alveolar macrophages were increased in interalveolar septa and alveoli at 48 hrs. And observed many alveolar macrophages at 96 hrs. In iron hematoxylin stain of Verhoeff, Collagen fiber were increased in respiratory bronchiole, interalveolar septa and alveoli and breath of alveoli, and alveolar pore were broaden. But, in paraquat plus 3-MC treated group, morphological changes were mild in lung tissue. These results indicate that 3-MC has a compensatory effects against toxicity of paraquat by conjugation with oxygen.

Armeniacae Amarum Semen Contributes to the Chemotaxis of Eosinophils and Secretion of Chemokines in A549 Human Epithelial Cells (행인(杏仁)이 천식관련 chemokine 분비와 호산구 chemotaxis에 미치는 영향)

  • Jung, Hee-Jae;Jung, Sung-Ki;Rhee, Hyung-Koo;Ju, Chang-Yeop
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.208-220
    • /
    • 2006
  • Objective: Eosinophils are typically characterized by a bilobar nucleus with highly condensed chromatin and cytoplasm containing two major types of granules, specific and primary granules, and lipid bodies. The role of inflammation in asthma and other allergic diseases of the airways is widely appreciated, and airway inflammation is now included as a defining feature of asthma. The importance of the presence of eosinophils in the airways of patients with fetal asthma has long been recognized, but the mechanism by which these cells are recruited and retained in the lungs are only now being elucidated. Eotaxin is a potent and specific eosinophil chemoattractant that is mobilized in the respiratory epithelium after allergic stimulation. Methods : Water extracts of Armeniacae Amarum Semen(AAS) and pulmonary epithelial cell lines A549(alveolar typeII epithelial cells) and human eosinophils were used. Cytotoxic effects of AAS and MIS assay were estimated, as well as the effects of AAS on chemokines from prestimulated A549 cells by sandwich ELISA and RI-PCR. Chemotaxis assay was conducted on prestimulated eosinophils treated with AAS. Results : In this study it is demonstrated that $TGF-{\alpha}$, IL-4 and $IL-1{\beta}$ induced the accumulation of chemokine mRNAs in the alveolar epithelial cell lines A549 in dose-dependent manner. Eotaxin and IL-8 were inhibited by AAS in dose-dependent manner(p<0.05). Eosinophil migration was inhibited at high concentrations of AAS(p<0.05). Conculusions : These findings are indicative of suppression of eotaxin and IL-8, and suggest that this is accomplished through AAS treatment. This raises the possibility that AAS is of therapeutic value in diseases such as asthma.

  • PDF

The Effects of Gamichunggumgangwha-tang (Jiaweiqingjinjianghuo-tang) and Gamiyukmigiwhang-tang (Jiaweiliuweidihuang-tang) on Immune Cell & Serum OA-specific IgE in BALF in a Rat Asthma Model (가미청금항화탕 및 가미육미지황탕이 Allergy 천식 모델 흰쥐의 BALF내 면역세포 및 혈청 IgE에 미치는 영향)

  • 조영민;정희재;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Background : Asthma is a chronic inflammatory disorder under immunological influence. Gamichunggumgangwha-tang (CG, Jiaweiqingjinjianghuo-tang) and Gamiyukmigiwhang-tang (YM, Jiaweiliuweidihuang-tang) are herbal tonics for asthma from traditional herbal medicine. Objective : To evaluate the effect of CG and YM on immune cell & serum OA-specific IgE in broncho-alveolar lavage fluid (BALF) in a rat asthma model. Materials and Methods : Rats were sensitized with OA; at day I sensitized group and CG and YM groups were systemically immunized by subcutaneous injection of 1mg OA and 300mg of Al(OH)3 in a total volume of 2ml. At the same time, 1 ml of 0.9% saline containing $6{\times}10^9$ B. pertussis bacilli was injected by Lp. 14 days after the systemic immunization, rats received local immunization by inhaling 0.9% saline aerosol containing 2% (wt/vol) OA. A day after local immunization, BALF was collected from the rats. Rats were orally administered with each of CG and YM extract for 14 days since the day after local immunization. Lymphocyte, CD4+ T cell and CD8+ T cell counts, CD4+/CD8+ ratio in BALF, change of serum OA-specific IgE level, CD4+ T cell and CD8+ T cell percentages in the peripheral blood were measured and evaluated. Results : CG and YM showed an alleviating effect on asthmatic responses of rats. CG decreased total cell, lymphocyte, CD4+ T cells in BALF, and serum OA-specific IgE level as compared with the control group. YM decreased lymphocytes as compared with the control group. CD4+/CD8+ ratio in BALF from the CG and YM groups and serum OA-specific IgE level from the YM group didn't show any significant variation from the control group. Conclusion : CG alleviated asthmatic hyperreactivity of the immune system through CD4+ T cells and serum IgE. Further the study of this immune system modulating mechanism is expected.

  • PDF

SARS-CoV-2 Infection of Airway Epithelial Cells

  • Gwanghui Ryu;Hyun-Woo Shin
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.3.1-3.16
    • /
    • 2021
  • Coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading worldwide since its outbreak in December 2019, and World Health Organization declared it as a pandemic on March 11, 2020. SARS-CoV-2 is highly contagious and is transmitted through airway epithelial cells as the first gateway. SARS-CoV-2 is detected by nasopharyngeal or oropharyngeal swab samples, and the viral load is significantly high in the upper respiratory tract. The host cellular receptors in airway epithelial cells, including angiotensin-converting enzyme 2 and transmembrane serine protease 2, have been identified by single-cell RNA sequencing or immunostaining. The expression levels of these molecules vary by type, function, and location of airway epithelial cells, such as ciliated cells, secretory cells, olfactory epithelial cells, and alveolar epithelial cells, as well as differ from host to host depending on age, sex, or comorbid diseases. Infected airway epithelial cells by SARS-CoV-2 in ex vivo experiments produce chemokines and cytokines to recruit inflammatory cells to target organs. Same as other viral infections, IFN signaling is a critical pathway for host defense. Various studies are underway to confirm the pathophysiological mechanisms of SARS-CoV-2 infection. Herein, we review cellular entry, host-viral interactions, immune responses to SARS-CoV-2 in airway epithelial cells. We also discuss therapeutic options related to epithelial immune reactions to SARS-CoV-2.

Changes in Distribution and Morphology of Rat Alveolar Macrophage Subpopulations in Acute Hyperoxic Lung Injury Model (고농도 산소로 유발한 흰쥐의 급성폐손상모델에서 폐포대식세포 아형군의 분포와 형태 변화)

  • Shin, Yoon;Lee, Sang-Haak;Yoon, Hyoung-Kyu;Lee, Sook-Young;Kim, Seok-Chan;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.478-486
    • /
    • 2000
  • Background : In acute lung injury, alveolar macrophages play a pivotal role in the inflammatory process during the initiation phase and in the reconstruction and fibrosis process during the later phase. Recently, it has been proven that alveolar macrophages are constituted by morphologically, biochemically and immunologically heterogenous cell subpopulations. The possibility of alterations to these characteristics of the alveolar macrophage population during lung disease has been raised. To investigate such a possibility a hyperoxic rat lung model was made to check the distributional and morphological changes of rat alveolar macrophage subpopulation in acute hyperoxic lung injury. Method : Alveolar macrophage were lavaged from normal and hyperoxic lung injury rats and separated by discontinuous gradients of percoll. After cell counts of each density fraction were accessed, the morphomeric analysis of alveolar macrophages was performed on cytocentrifuged preparations by transmission electron micrograph. Result : 1. The total alveolar macrophage cell count significantly increased up to 24 hours after hyperoxic challenge (normal control group $171.6{\pm}24.1{\times}10^5$, 12 hour group $194.8{\pm}17.9{\times}10^5$, 24 hour group $207.6{\pm}27.1{\times}10^5$, p<0.05). oHoHH However the 48 hour group ($200.0{\pm}77.8{\times}10^5$) did not show a significant difference. 2. Alveolar septal thickness significantly increased up to 24 hours after hyperoxic challenge(normal control group $0.7{\pm}0.2{\mu}m$, 12 hour group $1.5{\pm}0.4{\mu}m$, 24 hour group $2.3{\pm}0.4{\mu}m$, p<0.05). However the 48 hour group did not show further change ($2.5{\pm}0.4{\mu}m$). Number of interstitial macrophage markedly increased at 24 hour group. 3. Hypodense fraction(fraction 1 and fraction 2) of alveolar macrophage showed a significant increase following hyperoxic challenge ($\beta=0.379$.$\beta=0.694$. p<0.05) ; however, fraction 3 was rather decreased following the hyperoxic challenge($\beta=0.815$. p<0.05), and fraction 4 showed an irregular pattern. 4. Electron microscopic observation of alveolar macrophage from each fraction revealed considerable morphologic heterogeneity. Cells of the most dense subfraction(fraction 4) were small, round, and typically highly ruffled with small membrane pseudopods. Cells of the least dense fraction (fraction 1) were large and showed irregular eccentric nucleus and high number of heterogenous inclusions. Conclusion : In conclusion, these results suggest that specific hypodense alveolar macrophage subpopulation may play a an important role in an acute hyperoxic lung injury model But further study, including biochemical and immunological function of these subpopulations, is needed.

  • PDF