• Title/Summary/Keyword: Alveolar bone height

Search Result 185, Processing Time 0.032 seconds

RESONANCE FREQUENCY ANALYSIS IN NON-SUBMERGED, INTERNAL TYPE IMPLANT WITH SINUS AUGMENTATION USING DEPROTEINIZED BOVINE BONE MINERAL (이종골을 이용한 상악동 측벽거상술과 동시 식립한 임프란트에서 안정성에 대한 공진 주파수 분석)

  • Lee, Ju-Hyon;Min, Hyun-Gi;Lee, Jin-Sook;Kim, Myung-Rae;Kang, Na-Ra
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.6
    • /
    • pp.554-560
    • /
    • 2008
  • In posterior maxilla, it is difficult to achieve primary stability of implants due to sinus pneumatization, alveolar bone loss, and low bone quality. The accurate and objective primary stability assessment is important for good prognosis of implants. Purpose: The aim of this study was to assess the primary stability of the non-submerged, internal type implants with maxillary sinus augmentation using deproteinized bovine bone mineral by a resonance frequency analyzer, when residual alveolar bone height is under 8mm Materials and methods: A total of 20 implants was placed into 5 grafted maxillary sinuses in 5 patients. Deproteinized bovine bone mineral (Bio-$Oss^{(R)}$) was used as graft material. SS II implants (diameter 4.1mm, and length 11.5mm, SLA suface)) were placed. All of the patients received maxillary sinus graft procedure by 1-step technique. Residual bone height was $1.3{\sim}7.8mm$ (mean 4.4mm) measured by panorama radiography. After implant placement, RFA was measured at 4,8,12,20 weeks. The results were divided into 2 groups; RFA value under 4mm and over 5mm of bone height. It was statistically analyzed. Results: 1. The primary stability of implants was increased with time 2. The RFA value was above 65 ISQ at 12 weeks 3. There was no correlation between RFA and residual alveolar bone height in maxillary sinus augmentation by 1-step technique. Conclusion: 1-step surgical procedure is a feasible option for patients with as little as 4mm residual alveolar bone height, when utilizing non-submerged, internal type implants with xenografts.

Cone-beam computed tomographic evaluation of dimensional hard tissue changes following alveolar ridge preservation techniques of different bone substitutes: a systematic review and meta-analysis

  • Pickert, Finn Niclas;Spalthoff, Simon;Gellrich, Nils-Claudius;Tarraga, Juan Antonio Blaya
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.3-27
    • /
    • 2022
  • Purpose: This study was conducted to evaluate and compare the effects of different graft materials used in alveolar ridge preservation on dimensional hard tissue changes of the alveolar ridge, assessed using cone-beam computed tomography (CBCT) scans. Methods: A systematic electronic search of MEDLINE and the Cochrane Central Register of Controlled Trials and a manual search were conducted from November 2019 until January 2020. Randomized controlled trials were included if they assessed at least 1 variable related to vertical or horizontal hard tissue changes measured using CBCT scans. After a qualitative analysis of the included studies, subgroups were formed according to the graft material used, and a quantitative analysis was performed for 5 outcome variables: changes in vertical alveolar bone height at 2 points (midbuccal and midpalatal/midlingual) and changes in horizontal (buccolingual) alveolar bone width at 3 different levels from the initial crest height (1, 3, and 5 mm). Results: The search resulted in 1,582 studies, and after an independent 3-stage screening, 16 studies were selected for qualitative analysis and 9 for quantitative analysis. The metaanalysis showed a significantly (P<0.05) lower reduction of alveolar ridge dimensions for the xenogenic subgroup than in the allogenic subgroup, both vertically at the midbuccal aspect (weighted mean difference [WMD]=-0.20; standard error [SE]=0.26 vs. WMD=-0.90; SE=0.22) as well as horizontally at 1 mm (WMD=-1.32; SE=0.07 vs. WMD=-2.99; SE=0.96) and 3 mm (WMD=-0.78; SE=0.11 vs. WMD=-1.63; SE=0.40) from the initial crest height. No statistical analysis could be performed for the autogenic subgroup because it was not reported in sufficient numbers. Conclusions: Less vertical and horizontal bone reduction was observed when xenogenic graft materials were used than when allogenic graft materials were used; however, the loss of alveolar ridge dimensions could not be completely prevented by any graft material.

Location of maxillary intraosseous vascular anastomosis based on the tooth position and height of the residual alveolar bone: computed tomographic analysis

  • Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Purpose: The aims of this study were to measure the distance of the intraosseous vascular anastomosis in the anterolateral wall of the maxillary sinus from different reference points, and to correlate the location of the intraosseous vascular anastomosis with the tooth position and the residual bone height of the maxilla. Methods: Computed tomography (CT) images were taken from 283 patients undergoing dental implants placement in the posterior maxilla. Three horizontal lines were drawn at the ridge crest, maxillary sinus floor, and the position of the anastomosis. A vertical second line at the center of each tooth was drawn perpendicular to the horizontal lines. The distance from the ridge crest to the maxillary sinus floor and the distance from the maxillary sinus floor to the bony canal were measured from the intersections of the horizontal and vertical lines. The residual alveolar bone height was used to categorize three groups: group 1,<4 mm; group 2, between 4 and 8 mm; and group 3, >8 mm. Results: The residual bone height values of different tooth positions were significantly different (P=0.0002). The distance from the maxillary sinus floor to the intraosseous vascular anastomosis was significantly different between groups 1 and 3 (P=0.0039). At the molar sites, a moderate negative correlation was found between the residual bone height and the distance from the maxillary sinus floor to the intraosseous anastomosis. The distances of the alveolar ridge crest and the maxillary sinus from the intraosseous vascular anastomosis were not significantly different between sexes. Conclusions: Within the limitations of this study, sites with a higher residual bone height in the molar regions were at a relatively high risk of artery damage during window osteotomy preparation; therefore, we recommend taking more precautions when using a lateral approach for sinus elevation.

A study on the morphological changes of lower incisor and symphysis during surgical-orthodontic treatment in skeletal class III malocclusion (악교정 수술을 받은 골격성 III급 부정교합자의 치료전후 하악전치부 치조골 형태변화에 대한 연구)

  • Ahn, Hyung-Soo;Kim, Seong-Sik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.361-373
    • /
    • 2002
  • The purpose of this study was to evaluate the morphological changes of olveolar bone and mandibular symphysis of lower incisor by presurgical orthodontic treatment and orthognathic surgery in skeletal class III malocclusion. The sample consisted of 30 adult class III malocclusion patients who have received bilateral sagittal split mandibular osteotomy. Lateral cephalograms were taken before treatment, after presurgical orthodontic treatment and 3 months after orthognathic surgery. Skeletal and symphyseal measurements were compared and the relationships between them were analysed. The results were as follow : 1. The labial and lingual alveolar bone height in presurgical and postsurgical group were decreased than that of pretreatment group. 2. The vertical measurements of the craniofacial skeleton showed reverse correlationship with anteroposterior width of basal alveolar bone, but IMPA showed correlatiionship (p<0.01) 3. The craniofacial skeleton and the change of symphyseal measurements(symphyseal length, symphyseal width) showed no correlationship. 4. The labial alveolar bone height showed correlationship with lingual alveolar bone height(p<0.001), and negative correlationship with lingual alveolar crestal width(p<0.01). Labial and lingual alveolar crestal width has negative correlationship (p<0.05). Mandibular symphyseal length and width has positive correlationship(p<0.01). 5. IMPA, LISA showed negative correlationship with labiolingual alveolar bone height and lingual alveolar width and positive correlationship with labial alveolar base bone width.

Evaluation of changes in the maxillary alveolar bone after incisor intrusion

  • Atik, Ezgi;Gorucu-Coskuner, Hande;Akarsu-Guven, Bengisu;Taner, Tulin
    • The korean journal of orthodontics
    • /
    • v.48 no.6
    • /
    • pp.367-376
    • /
    • 2018
  • Objective: This study was performed to investigate the changes in alveolar bone after maxillary incisor intrusion and to determine the related factors in deep-bite patients. Methods: Fifty maxillary central incisors of 25 patients were evaluated retrospectively. The maxillary incisors in Group I (12 patients; mean age, $16.51{\pm}1.32years$) were intruded with a base-arch, while those in Group II (13 patients; mean age, $17.47{\pm}2.71years$) were intruded with miniscrews. Changes in the alveolar envelope were assessed using pre-intrusion and post-intrusion cone-beam computed tomography images. Labial, palatal, and total bone thicknesses were evaluated at the crestal (3 mm), midroot (6 mm), and apical (9 mm) levels. Buccal and palatal alveolar crestal height, buccal bone height, and the prevalence of dehiscence were evaluated. Two-way repeated measure ANOVA was used to determine the significance of the changes. Pearson's correlation coefficient analysis was performed to assess the relationship between dental and alveolar bone measurement changes. Results: Upper incisor inclination and intrusion changes were significantly greater in Group II than in Group I. With treatment, the alveolar bone thickness at the labial bone thickness (LBT, 3 and 6 mm) decreased significantly in Group II (p < 0.001) as compared to Group I. The LBT change at 3 mm was strongly and positively correlated with the amount of upper incisor intrusion (r = 0.539; p = 0.005). Conclusions: Change in the labial inclination and the amount of intrusion should be considered during upper incisor intrusion, as these factors increase the risk of alveolar bone loss.

Implant placement with inferior alveolar nerve repositioning in the posterior mandible

  • Doogyum Kim;Taeil Lim;Hyun-Woo Lee;Baek-Soo Lee;Byung-Joon Choi;Joo Young Ohe;Junho Jung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.6
    • /
    • pp.347-353
    • /
    • 2023
  • This case report presents inferior alveolar nerve (IAN) repositioning as a viable approach for implant placement in the mandibular molar region, where challenges of severe alveolar bone width and height deficiencies can exist. Two patients requiring implant placement in the right mandibular molar region underwent nerve transposition and lateralization. In both cases, inadequate alveolar bone height above the IAN precluded the use of short implants. The first patient exhibited an overall low alveolar ridge from the anterior to posterior regions, with a complex relationship with adjacent implant bone level and the mental nerve, complicating vertical augmentation. In the second case, although vertical bone resorption was not severe, the high positioning of the IAN within the alveolar bone due to orthognathic surgery raised concerns regarding adequate height of the implant prosthesis. Therefore, instead of onlay bone grafting, nerve transposition and lateralization were employed for implant placement. In both cases, the follow-up results demonstrated successful osseointegration of all implants and complete recovery of postoperative numbness in the lower lip and mentum area. IAN repositioning is a valuable surgical technique that allows implant placement in severely compromised posterior mandibular regions, promoting patient comfort and successful implant placement without permanent IAN damage.

Radiographic evaluation of alveolar bone profile of maxillary anterior teeth in Korean young adult (한국인 성인의 상악 전치부 치조골 형태에 관한 방사선학적 연구)

  • Seo, Hyo-Seok;Chung, Chin-Hyung;Lim, Sung-Bin;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.461-471
    • /
    • 2006
  • In order to achieve a satisfactory esthetic result of periodontal surgery or implant in maxillary anterior area, periodontists must be aware of normal alveolar bone anatomy. The purpose of this study was to evaluate the relationship of alveolar bone morphology to tooth shape and form. 78(mean age : 25 yrs) periodontally healthy volunteers participated in this study. Two maxillary central incisor and one lateral incisor were selected to study. With minimal local anesthesia, gutta-percha cone inserted to labial gingival sulcus of selected teeth just after bone sounding with periodontal probe. Metal ball (4mm diameter) attached to palatal fossa of central incisor. Then, periapical radiograph was taken according to long cone paralleling technique. After film scan, labial alveolar bone profile reproduced along interproximal bone and apical ends of gutta-percha cones on computer screen. By utilizing computer program, the distance from height of interproximal bone to the labial bone crest in central incisor-central incisor and central incisor-lateral incisor area was measured and converted to real distance by using vertical length of metal ball on film. After measuring crown length & width of central incisor, the 10 individuals ranked lowest GW/L ratio (crown width/length ratio) and the 10 ranked highest were selected as having a long-narrow(group N), or a short-wide(group W) form of the central incisors. Means of the distance from height of interproximal bone to the labial bone crest of group N, W were calculated and compared by means of independent t-test. The results were as follows: 1. Mean distance from the height of the interproximal bone to the labial bone crest was $3.5{\pm}0.7mm$ between two central incisor, and $2.8{\pm}0.6mm$ between central and lateral incisor. 2. Mean GW/L ratio of group N was 0.57, and group W was 0.8. Mean distance from the height of the interproximal bone to the labial bone crest of group N was higher than group W in both measured area(measurements of group N, W were $3.9{\pm0.2mm$ and $3.5{\pm}0.2mm$ between two central incisor, $3.0{\pm}0.2mm$ and $2.8{\pm}0.2mm$ between central and lateral incisor), but there were no statistically significant differences when the groups were compared. Within the limits of the present study, there was a tendency that subjects with long-narrow teeth have more scalloped alveolar bone profile than subjects with short-wide teeth in upper anterior area, but no statistically significant differences were found.

The effect of peri-implant bone exposure on soft tissue healing and bone loss in two adjacent implants

  • Shin, Seung-Yun;Kye, Seung-Boem;Hong, Jong-Rak;Paeng, Jun-Young;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.1
    • /
    • pp.20-24
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate the soft tissue and bone change around two adjacent implants in onestage implant surgery. Methods: Eleven subjects (7 males, 4 females) who were needed placement of 2 adjacent implants in the molar area were included. The two implants were placed with the platform at the level of the alveolar crest. The interproximal bone between the 2 implants was not covered with gingiva. After surgery, an alginate impression was taken to record the gingival shape and radiographs were taken to evaluate implant placement. Using a master cast, the gingival height was measured at baseline, 4 weeks, and 12 weeks. In the radiograph, the alveolar bone level was measured at the mesial and distal side of both implants at baseline and 12 weeks. Results: The exposed bone was covered with gingiva at both 4 and 12 weeks. Loss of alveolar bone around implants was found in all areas. The alveolar bone level in the exposed bone area did not differ from that in the non-exposed area. Conclusions: This study showed that the alveolar bone level and gingival height around 2 adjacent implants in the exposed bone area did not differ from that in unexposed bone area.

Reproducibility of cone-beam computed tomographic measurements of bone plates and the interdental septum in the anterior mandible

  • Valerio, Claudia Scigliano;Alves, Claudia Assuncao e;Manzi, Flavio Ricardo
    • Imaging Science in Dentistry
    • /
    • v.49 no.1
    • /
    • pp.9-17
    • /
    • 2019
  • Purpose: This study aimed to introduce a novel method to evaluate the alveolar bone and interdental septum in the anterior mandible using cone-beam computed tomography (CBCT). Materials and Methods: Fifty-six CBCT scans from adult patients were selected. The CBCT scans were obtained before and after orthodontic treatment. The following measurements were taken: width of the alveolar bone and the interdental septum, height of the interdental septum, height of the bone plates, distance between the cementoenamel junction and marginal bone crests, and vertical positioning of the mandibular incisor, using the lingual plane as a reference. To test the reproducibility and the stability of the lingual plane, a triangle was traced in the anterior mandible. The intra-class correlation coefficient(ICC) was used to determine intra- and inter-examiner agreement. The paired Student t-test was used to evaluate the area of the triangle and the reproducibility of all measurements. Results: The ICC was excellent for the alveolar bone and dental measurements (0.9989 and 0.9977, respectively), as well as for the interdental septum (0.9987 and 0.9961, respectively). The area of the triangles showed stability in the lingual plane (P>0.05). For the alveolar bone, mandibular incisor, and interdental septum measurements, no statistically significant differences were found between the 2 examiners(P>0.05), confirming the technical reliability of the measurements. Conclusion: The method used in this study provides a valid and reproducible assessment of alveolar bone dimensions in the anterior mandible measured on CBCT images.

Implant Placement Using Various Surgical Techniques: Case Report

  • Lee, Ji-Young;Kim, Young-Kyun
    • Journal of Korean Dental Science
    • /
    • v.3 no.2
    • /
    • pp.50-59
    • /
    • 2010
  • Implant placement is frequently complicated and challenging because of the poor quality and inadequate height of bone. Clinicians should consider various surgical procedures to overcome the problems. We report a case with various surgical procedures used such as inferior alveolar nerve repositioning, sinus bone graft, and autogenous block bone graft using the coronoid process and ramus to overcome severe vertical and horizontal alveolar bone atrophy.

  • PDF