• Title/Summary/Keyword: Alveolar Macrophage

Search Result 111, Processing Time 0.026 seconds

Involvement of Oxidative Stress in Formaldehyde-induced Apoptosis in Cultured Lung Macrophage Cells (폐 대식세포주에서 포름알데히드에 의한 세포 사멸 효과에 대한 산화성 스트레스 관련성)

  • Park, Soo-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.295-300
    • /
    • 2009
  • Formaldehyde (FA) is an important irritant compound in pesticide to induce asthma and allergy in respiratory system. Alveolar macrophage is also an pivotal cell in the immune response of respiratory system. However, the effect of FA in macrophage cell viability has not been elucidated. Thus, this study was conducted to investigate the effect of FA on apoptosis in Raw 264.7 cells, alveolar macrophage cell line. In this study, FA decreased cell viability of lung alveolar macrophage cells in a dose-dependent manner (>$100{\mu}M$). FA-induced decrease of cell viability was blocked by the treatment of antioxidants (vitamin C, NAC, and catalase). Indeed, FA induced lipid peroxide formation in Raw 264.7 cells. FA decreased Bcl-2 expression but increased Bax expression in lung alveloar macrophage cells. In addition, FA also increased the cleaved form of caspase-3. In conclusion, FA induced apoptosis via oxidative stress in cultured Raw 264.7 cells.

Relieving effect for respiratory inflammation of Gumiganghwal-tang (구미강활탕(九味羌活湯)의 호흡기 염증 완화효과)

  • Bo-In Kwon;Joo-Hee Kim
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.35-46
    • /
    • 2023
  • Objectives : Gumiganghwal-tang and its main components have been used for treatment of cough, headache, joint pain and fever. Using a respiratory inflammatory model, we intend to demonstrate the its anti-inflammatory effect and immune mechanism of Gumiganghwal-tang. Methods : We induced the respiratory inflammation mouse model by papain treatment. Female BALB/C mice (8 weeks old) were divided into three groups as follows: saline control group, papain treatment group (vehicle), papain and Gumiganghwal-tang (200 mg/kg) treatment group (n=4). To verify the anti-inflammatory effect of Gumiganghwal-tang extracts, we measured the infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF) and nasal lavage fluid (NALF). Additionally, the efficacy of Gumiganghwal-tang extracts on Th2 cell population and alveolar macrophage in lung were analyzed by using flow cytometry. Results : Gumiganghwal-tang extracts administration decreased inflammatory cell infiltration in BALF and NALF, especially of eosinophils. Furthermore, interleukin-5 level was reduced in lung by drug administration. Interestingly, Gumiganghwal-tang extracts treatment also decreased the Th2 cell (CD4+GATA3+) population and increased the alveolar macrophage (CD11b+CD11c+) population in lung. Conclusions : Our findings indicate that Gumiganghwal-tang extracts have anti-inflammatory effects by mediating Th2 cell and alveolar macrophage cell activation.

Effects of Sochungyong-tang on Cytokine Gene Expression in Mouse Alveolar Macrophage (소청용장(小靑龍湯)이 생쥐의 폐(肺) 대식세포(大食細胞) Cytokine 귀전자(遣傳子) 발현에 미치는 영향)

  • Park, In-Gi;Sim, Sung-Young;Byun, Hak-Sung;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.18 no.3
    • /
    • pp.1-17
    • /
    • 2005
  • In many recent studies, molecular biological methods have been used to investigate the role of cytokines in pathogenesis of lung disease. This Experiment was conducted to investigate the effects of Sochungyong-tang on gene expressions in Mouse Alveolar Macrophage. Fer this purpose, we observed the cytokines ($IL-1{\beta}$, IL-6, IL-10, iNOS, $MIP-1{\alpha},\;MIP-1{\beta},\;MIP-1{\gamma},\;TGF-{\beta},\;TNF-{\alpha}$). We picked the alveolar macrophage out of mice and cultured it. We analyzed the cytokine gene expression by reverse transcription-PCR. The results obtained were as follows : 1 . Sochungyong-tang showed inhibitory effects on $IL-1{\beta}$ in time and concentration. 2. Sochungyong-tang showed inhibitory effects on IL-6 in time and concentration. 3. Sochungyong-tang showed inhibitory effects on IL-10 in concentration. 4. Sochungyong-tang showed inhibitory effects on iNOS. 5. Sochungyong-tang showed inhibitory effects on $TGF-{\beta}$ in time and concentration. 6. Sochungyong-tang showed on inhibitory effects on $MIP-1{\alpha},\;MIP-1{\beta},\;MIP-1{\gamma}$, $TCF-{\beta}$, $TNF-{\alpha}$. According to above results, it is supposed that Sochungyong-tang has the inhibitory effects on cytokine gene expression in mouse alveolar macrophage and can be usefully applied for curing inflammatory process of lung disease. Advanced studies are required to investigate the cure mechanism of Sochungyong-tang in the future.

  • PDF

Study on the pulmonary lesions and the function of alveolar macrophage in the rats exposed to cement dust (시멘트 분진이 랫드의 폐장병변 및 폐포 macrophage의 기능에 미치는 영향)

  • 강신석;강종구;정재황
    • Korean Journal of Veterinary Service
    • /
    • v.21 no.1
    • /
    • pp.41-56
    • /
    • 1998
  • These experiment was carried out to investigate the pulmonary lesions and the function of alveolar macrophages in rats exposed to cement dusts. 1. The number of total cells in bronchoalveolar lavage fluid(BAL) increased remarkably in 1st month. As time goes by, tend to less and less in numbers. 2. The number of neutrophil and lymphocytes obtaining from the total cell of BAL increased remarkably in first month, but as time goes by, they tended to grow less and less in number. Macrophages decreased gradually after being temporarily augmentation. 3. Histipathologically, the thickening of alveolar walls, alveolar interstitial, and infiltrated macrophages containing cement dusts.

  • PDF

Production of $PGE_2$ and $H_2O_2$ from Alveolar Macrophage Stimulated by Silica (유리규산에 의하여 자극된 폐포 대식세포의 $H_2O_2$$PGE_2$ 생성)

  • Lee, Seong-Beom;Choi, Moon-Ju;Park, Won-Sang;Lee, Jung-Yong;Chae, Gue-Tae;Kim, Sang-Ho;Kim, Choo-Soung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.513-520
    • /
    • 1994
  • Background: The pathogenesis of silicosis has been focused on the interaction between alveolar macrophages and silica particle. Although fibrosis in silicosis has been studied extensively, the mechanism is still not fully understood. There is increasing evidence that monokines and arachidonic acid metabolites macrophage are involved in pathogenesis of silicosis. Recently, it was reported that prostaglandin E2 produced from macrophage counteracts the stimulatory effects of other monokines on fibroblast proliferation or collagen production. Until now, it was remained uncertain by which mechanism silica particle may activate alveolar macrophage to an enhanced release of prostaglandin E2. Methods: In order to investigate the relationship between the activity of alveolar macrophage and the production of $PGE_2$ from activated alveolar macrophage, the authors measured hydrogen peroxide and $PGE_2$ from alveolar macrophages activated by silica in vitro and from alveolar macrophages in the silicotic nodules from rat. Experimental silicosis was induced by intratracheal infusion of silica($SiO_2$) suspended in saline(50 mg/ml) in Sprague-Dawley rats. Results: produced by 1) The silicotic nodules with fibrosis were seen from the sections of rat lung at 60 days after intratracheal injection with 50 mg aqueous suspension of silica(Fig. 1). 2) In vitro, silica caused the dose dependent increase of hydrogen peroxide(p<0.05, Fig. 2A) and $PGE_2$(p>0.05, Fig. 2B) release from alveolar macrophages. Alveolar macrophages from rat with silicotic nodules released more hydrogen peroxide and $PGE_2$ than those of control group(p<0.05, Fig. 3). Conclusion: These results suggest that silica particle could activate macrophage directly and enhanced the release of $PGE_2$ and hydrogen peroxide from the alveolar macrophage.

  • PDF

A Case of Idiopathic Pulmonary Alveolar Proteinosis Treated with Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) after Partial Response to Whole Lung Lavage (전폐 세척술로 부분 관해 후 GM-CSF 투여로 치료된 특발성 폐포단백증 1예)

  • Song, Jun Whi;Park, Sun Hyo;Kang, Kyung Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.6
    • /
    • pp.569-573
    • /
    • 2009
  • Idiopathic pulmonary alveolar proteinosis (PAP) is a rare disorder characterized by surfactant component accumulation in the alveolar space. Idiopathic PAP has recently been recognized as a autoimmune disease of impaired alveolar macrophage function caused by autoantibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF). While whole lung lavage has been the standard treatment, not every patient shows a complete response. Subcutaneous injection or inhalation of GM-CSF is another promising treatment option for PAP. A 45-year-old patient visited our hospital for dyspnea, he was diagnosed as PAP and underwent whole lung lavage. Eighteen months later, the patient had not achieved complete remission in despite of initial response. After then he was administered with GM-CSF (5 ${mu}g/kg/day$, subcutaneous injection) for fivetimes a week during 2 months. Nine months later, the abnormal shadows in high-resolution computed tomography (HRCT) decreased and the patient fully recovered in forced vital capacity. After 60 months, the HRCT scan showed complete remission of PAP.

Increase of Alveolar Macrophages Contributes to the Enhanced Xanthine Oxidase Activity in the Bronchoalveolar Lavage Fluid of Rats Given IL-1 Intratracheally (Interleukin-1의 기관지 투여 후 나타나는 폐세척액 내 대식세포의 수적변화에 따른 Xanthine Oxidase의 활성변화)

  • Cho, Hyun-Gug;Yoon, Chong-Guk;Choi, Jeung-Mok;Park, Won-Hark;Lee, Young-Man
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.275-285
    • /
    • 2001
  • The pulmonary alveolar macrophage is thought to play an important role in the mediation of acute inflammatory lung injury by secretory products including degraded enzymes, cytokines, and reactive oxygen metabolites . This study was conceived to understand the role of alveolar macrophage in oxidative stress induced acute lung injury. To examine the alveolar macrophages and xanthine oxidase (XO) activity in bronchoalveolar lavage fluid (BALF), time-dependent changes of numbers of alveolar macrophages, monocytes and neutrophils in alveolar cavity were counted in association with ultrastructural and cytochemical observations of lung tissue and alveolar cells. The number of monocytes was increased (p<0.001) at 1h after IL-1 treatment compared with that of sham. At 2h after instillation of IL-1, the number of alveolar macrophages was the highest, XO activity in BALF was elevated at 2h after IL-1 instillation and the activity was markedly elevated(p<0.05) at 3h after IL-1 treatment. On the basis of these experimental results, it is suggested that, during early phase of acute lung injury induced by IL-1, alveolar macrophage-derived XO contributes to lung injury earlier than the neutrophilic respiratory burst.

  • PDF

Superoxide Generation by Blood Monocyte and Pulmonary Alveolar Macrophage in Patients with Pulmonary Tuberculosis (폐결핵환자의 폐포대식세포 및 말초혈액내 단구세포에서 분비하는 과산화음이온의 비교 관찰)

  • Song, Jeong-Sup;Lee, Suk-Young;Jang, Jie-Jung;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.1
    • /
    • pp.11-19
    • /
    • 1994
  • Background: Mycobacterium tuberculosis is a facultative intracellular pathogen which persists and multiplies within macrophage. Competent cell mediated immunity by cooperation of both T lymphocyte and macrophage of the host is required to kill the Mycobacterium tuberculosis. But a precise understanding of the pathogenesis of tuberculosis infection in pulmonary alveolar macrophage has not been achived. Research on the macrophage's basic microbicidal mechanism has elucidated the importance of oxygen-dependent or oxygen-independent components. Oxygen dependent processing begins with the reduction of oxygen by NADPH oxidase and generation of superoxide. In this study, the oxidative metabolic status of blood monocyte and pulmonary alveolar macrophage in patients with active pulmonary tuberculosis was accessed and compared with that of healthy control subjects to know whether there was a basic difference in superoxide generation by mononuclear cells between two groups. Methods: Pulmonary alveolar macrophage was purified after performing BAL(bronchoalveolar lavage) through the bronchi of infected lesion by plastic adhesion method. Blood monocyte was purified by Ficoll-Hypaque method. Superoxide generation by blood monocyte and pulmonary alveolar macrophage was measured by ferricytochrome-C reduction method after either stimulated with PMA(phorbol myristate acerate) or non-stimulated states. We also measured the effect of pulmonary tuberculosis patient's serum on superoxide generation by monocyte. Results: 1) Generation of superoxide by alveolar macrophage obtained from patients with pulmonary tuberculosis was little higher than those of controls, and PMA enhanced the generation of 2) Generation of superoxide by blood monocyte obtained from patients with pulmonary tuberculosis was little higher than those of control(p>0.05), and PMA more enhanced the generation of superoxide in patientswith pulmonary tuberculosis than those in controls(p<0.02). 3) Patient's serum enhanced the generation of superoxide by blood monocyte obtained from patients with pulmonary tuberculosis and controls, but not in the case of PMA stimulated blood monocyte. Conclusion: The present study suggest that the phenomenon of M.tuberculosis escape the microbicidal action of macrophage was not result of suppressed superoxide generation by blood monocyte and pulmonary alveolar macrophage, rather there might be a factor to stimulate the generation of superoxide by blood monocyte in pulmonary tuberculosis patient serum, but the comparision with effect of control's serum on superoxide generation needs further elucidation.

  • PDF

Metal Effects of Urban Air Particulates on Cytokine Production and DNA Damage

  • Lee, Kwan-Hee;Hong, Yun-Chul
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.255-265
    • /
    • 2001
  • Epidemiologic studies have demonstrated an association between short-term exposure to particulate air pollutants and increased mortality. However the biological mechanism underlying these associations have not been fully established and also the chemical and physical characteristics of the pollutant particles are not well understood. The metal constituents of air pollutant particles and their bioavailability are considered to Play an important role as possible mediators of Particle-induced airway injury and inflammation. Sprague-Dawley rat alveolar macrophage cells (NR8383) were exposed to airborne and acid-leached particulate matter (PM). Titanium oxide and nickel subsulfide were used as negative and positive controls. Particle-induced reactive oxygen species formation in cells was detected using the fluorescent probe 2',7'-dichlorofluorescin diacetate. Expression of TNF-$\alpha$ and IL-6 were measured by enzyme-linked immunosorbent assay, and PM-induced DNA double-strand breaks were determined with $\lambda$DNA/Hind III marker. Metals associated with air pollutant particles mediated intracellular oxidant production in alveolar macrophages, and the cytotoxicity and proinflammatory cytokine production induced by PM were associated with oxidative stress. The oxidants produced by air pollutant particles also are likely to induce DNA double-strand breaks. Our findings in alveolar macrophage cells exposed to PM and acid-leached PM support the hypothesis that metal components in urban air pollutants and their bioavailabilities might play an Important role in the induction of the adverse health effects.

  • PDF

Changes in Distribution and Morphology of Rat Alveolar Macrophage Subpopulations in Acute Hyperoxic Lung Injury Model (고농도 산소로 유발한 흰쥐의 급성폐손상모델에서 폐포대식세포 아형군의 분포와 형태 변화)

  • Shin, Yoon;Lee, Sang-Haak;Yoon, Hyoung-Kyu;Lee, Sook-Young;Kim, Seok-Chan;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.478-486
    • /
    • 2000
  • Background : In acute lung injury, alveolar macrophages play a pivotal role in the inflammatory process during the initiation phase and in the reconstruction and fibrosis process during the later phase. Recently, it has been proven that alveolar macrophages are constituted by morphologically, biochemically and immunologically heterogenous cell subpopulations. The possibility of alterations to these characteristics of the alveolar macrophage population during lung disease has been raised. To investigate such a possibility a hyperoxic rat lung model was made to check the distributional and morphological changes of rat alveolar macrophage subpopulation in acute hyperoxic lung injury. Method : Alveolar macrophage were lavaged from normal and hyperoxic lung injury rats and separated by discontinuous gradients of percoll. After cell counts of each density fraction were accessed, the morphomeric analysis of alveolar macrophages was performed on cytocentrifuged preparations by transmission electron micrograph. Result : 1. The total alveolar macrophage cell count significantly increased up to 24 hours after hyperoxic challenge (normal control group $171.6{\pm}24.1{\times}10^5$, 12 hour group $194.8{\pm}17.9{\times}10^5$, 24 hour group $207.6{\pm}27.1{\times}10^5$, p<0.05). oHoHH However the 48 hour group ($200.0{\pm}77.8{\times}10^5$) did not show a significant difference. 2. Alveolar septal thickness significantly increased up to 24 hours after hyperoxic challenge(normal control group $0.7{\pm}0.2{\mu}m$, 12 hour group $1.5{\pm}0.4{\mu}m$, 24 hour group $2.3{\pm}0.4{\mu}m$, p<0.05). However the 48 hour group did not show further change ($2.5{\pm}0.4{\mu}m$). Number of interstitial macrophage markedly increased at 24 hour group. 3. Hypodense fraction(fraction 1 and fraction 2) of alveolar macrophage showed a significant increase following hyperoxic challenge ($\beta=0.379$.$\beta=0.694$. p<0.05) ; however, fraction 3 was rather decreased following the hyperoxic challenge($\beta=0.815$. p<0.05), and fraction 4 showed an irregular pattern. 4. Electron microscopic observation of alveolar macrophage from each fraction revealed considerable morphologic heterogeneity. Cells of the most dense subfraction(fraction 4) were small, round, and typically highly ruffled with small membrane pseudopods. Cells of the least dense fraction (fraction 1) were large and showed irregular eccentric nucleus and high number of heterogenous inclusions. Conclusion : In conclusion, these results suggest that specific hypodense alveolar macrophage subpopulation may play a an important role in an acute hyperoxic lung injury model But further study, including biochemical and immunological function of these subpopulations, is needed.

  • PDF