• Title/Summary/Keyword: Aluminum-water Combustion

Search Result 9, Processing Time 0.022 seconds

Development of combustion test device for study of aluminum powder combustion (알루미늄 분말 연소시험을 위한 장치 개발)

  • Hwang, Yong-Seok;Lee, Ji-Hyung;Lee, Kyung-Hun;Kim, Kwang-Yun;Lee, Sung-Woong;Yeo, Tae-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.548-553
    • /
    • 2011
  • The device for studying combustion characteristic of aluminum powder and water was developed. The device has ability to adjust temperature, pressure, and equivalent ratio to some specified value which effect on combustion characteristic of aluminum and water mixture. Methane combustor, water supply device, aluminum powder feeder, and linear combustor are assembled to aluminum combustion test device. Each device has the ability to supply matter to combustor on steady and quantitatively controlled manner and test sequence specified by user can be automatically controlled. The combustion of aluminum powder was observed when integrated device was operated normally.

  • PDF

Combustion Characteristics of Al powder with Water Suspension (Al 분말과 Water 혼합물의 연소특성 연구)

  • Ki, Wan-Do;Kim, Kwang-Yeon;Shmelev, Vladimir;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.157-162
    • /
    • 2012
  • The basic study for combustion characteristics of micron-sized aluminum powder with water suspension was carried out. Under atmospheric pressure, the combustion characteristics of aluminum powder with water suspension was studied by adjust the equivalent ratio and the density of a mixture which effect on burning rate. Based on atmospheric pressure's result, the device for the combustion characteristics of aluminum powder with water suspension under high-pressure environment was developed. In the pressure range from 2 to 50 atm the effect of pressure to burning rate was same as the case of nano-aluminum with water suspension, but the pressure range from 50 to 70 atm the sharp increase in burning rate was observed. In the experiment of varying the equivalence ratio, the combustion did not proceed in the condition of excess oxidizer (eq = 1.5).

  • PDF

Combustion modeling of nano aluminum particle and water mixture (나노 알루미늄-물 혼합물의 수반응 연소 모델링)

  • Yoon, Shi-Kyung;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.472-475
    • /
    • 2010
  • Theoretical consideration on the combustion behavior of nano-aluminum and water mixture was conducted. The regions are divided into; 1)water+aluminum 2)steam+aluminum 3)reaction zone. Latent heat of vaporization was considered as a function of pressure in case of phase change of water. Also, pressure exponent was studied of various sized nano particles within the range of 0.1MPa ~ 10MPa.

  • PDF

Effects of Oxidizer Inject Angle on Combustion Characteristics in Hydro-Reactive Engine (Hydro-Reactive 엔진의 산화제 분사각도에 따른 연소특성에 대한 연구)

  • Won, Jong Han;Lee, Sung Nam;Baek, Seung Wook;Hwang, Chang Hwan;Kim, Kyung Moo
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, the variation of the flow field in Hydro-reactive engine combustor was numerically studied through 2-dimensional axisymmetric model with aluminum and heated water vapor. For calculating all velocity fields, compressible Navier-Stokes equation was used with Pre-conditioning. AUSM+up(p) method was used to exactly calculate mass flow in the control volume. As using SST model that is a turbulent model, the result had high accuracy for free stream and the flow near the wall. The effects of the temperature, variation of the flow field and distribution of chemical products on inject angle of heated water vapor were studied.

Study on combustion characteristics of seawater-reactive solid propellant for underwater propulsion (수중추진을 위한 해수반응성 고체추진제의 연소특성에 관한 연구)

  • Park, Kilsu;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.128-130
    • /
    • 2017
  • $NaBH_4$ was added to improve the water reactivity of aluminum powder as a solid propellant for underwater propulsion. Aluminum powders showed different combustion characteristics depending on the amount of $NaBH_4$ added. When $NaBH_4$ was added, it was burned by reaction with water even at a temperature much lower than the boiling point. In this study, it was confirmed that $NaBH_4$ is an effective additive to accelerate the vapor reaction with Al powder.

  • PDF

Combustion of Nano-scale Aluminum and Liquid Water for Pressure Sensitivity (물을 산화제로 하는 나노 알루미늄 분말 연소의 압력 민감도 실험)

  • Lee, Sang-Hyup;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.476-482
    • /
    • 2010
  • 알루미늄은 많은 이점에도 불구하고 표면의 높은 용융점을 가지는 산화 피막 효과로 인해 원활하게 점화와 연소 반응이 일어나지 못하는 단점이 있다. 그런데 산화피막을 제거하는 방법은 매우 복잡하며 용이하지 않으므로 본 연구에서는 연소율은 압력에 비례한다는 원리를 이용하여 접근하였다. 연소 속도의 압력에 따른 민감도를 알기 위해 압력 용기를 설계하였고 아르곤 가스를 이용하여 80nm의 알루미늄 분말과 산화제인 증류수의 혼합물을 3, 5, 10 기압의 압력 조건에 따른 연소속도의 변화를 측정하고 해외의 연구와 비교 분석하였다.

  • PDF

Synthesis and characterization of AlN nanopowder by the microwave assisted carbothermal reduction and nitridation (CRN)

  • Chun, Seung-Yeop;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.223-228
    • /
    • 2017
  • Aluminum nitride (AlN) powder was successfully synthesized at low temperature via carbothermal reduction and nitridation (CRN) assisted by microwave heating. The synthesis processes of AlN powder were investigated with X-ray diffraction, FE-SEM, FT-IR and TGA/DSC. Aluminum nitrate was used as an oxidizer and aluminum source, urea as fuel, and glucose as carbon source. These starting materials were mixed with D.I water and reacted in a flask at $100^{\circ}C$ for 20 minutes. After the reaction was finished, black foamy intermediate product was formed, which was considered to be an amorphous $Al_2O_3$ particles through intermediate product obtained by solution combustion synthesis (SCS) at the results of X-ray diffraction patterns and FT-IR. This intermediate product was nitridated at temperatures of $1300^{\circ}C$ and $1400^{\circ}C$ in $N_2$ atmosphere by a microwave heating furnace and then decarbonated at $600^{\circ}C$ for 2 hours in air. It should be noticed from FE-SEM images that as nitridated particles, identified as AlN from X-ray diffraction patterns, are covered with carbon residues. After decarbonating the nitridated powders, the spherical pure AlN powders were obtained without alumina and their particle sizes were dependent on the nitridating temperature with high temperature of $1400^{\circ}C$ giving large particles of around 70~100 nm.

Conceptual Design of the Slag Removal Method in the Metal Powder Combustor and Condition Tests for the Water Film Formation (금속분말 연소기의 slag 제거기법 개념 설계 및 Water Film 형성 조건 기초실험)

  • Kim, Kwang-Yeon;Shmelev, V.;Ko, Hyun;Lee, Sung-Woong;Cho, Yong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.554-557
    • /
    • 2011
  • One of the issues that occurs in development of a combustor using Metal Powder as a fuel is an alumina slag processing. A water film formed inside the combustor is expected to be able to solve this issue. The experiments about the formation of a water film were carried out as a preliminary study. As the tangential velocity of water jet is increasing, the angle derivation from horizontal is decreasing for the test model. Results of the experiments showed that the thin water film on the inner surface appeared at the velocity of 10~15 m/s.

  • PDF

Anti-Icing Characteristics of Aluminum 6061 Alloys According to Surface Nanostructure (알루미늄 6061 합금의 표면 나노 구조물 변화에 따른 방빙 특성 연구)

  • Rian, Kim;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.476-486
    • /
    • 2022
  • Recently, aluminum 6061 instead of copper alloy is used for cooling heat exchangers used in the internal combustion of engines due to its economic feasibility, lightweight, and excellent thermal conductivity. In this study, aluminum 6061 alloy was anodized with oxalic acid, phosphoric acid, or chromic acid as an anodizing electrolyte at the same concentration of 0.3 M. After the third anodization, FDTS, a material with low surface energy, was coated to compare hydrophobic properties and anti-icing characteristics. Aluminum was converted into an anodization film after anodization on the surface, which was confirmed through Energy Dispersive X-ray Spectroscopy (EDS). Pore distance, interpore distance, anodization film thickness, and solid fraction were measured with a Field Emission Scanning Electron Microscope (FESEM). For anti-icing, hydrophobic surfaces were anodized with oxalic acid, phosphoric acid, or chromic acid solution. The sample anodized in oxalic acid had the lowest solid fraction. It had the highest contact angle for water droplets and the lowest contact hysteresis angle. The anti-icing contact angle showed a tendency to decrease for specimens in all solutions.