• Title/Summary/Keyword: Aluminum wheel

Search Result 47, Processing Time 0.023 seconds

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

Design of Adhesive Joints for Composite Propeller Shafts (복합재료 동력전달축의 접착조인트 설계)

  • 김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

An Experimental Study on the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 관한 실험적 연구)

  • Yoo Seong Yeon;Chung Min Ho;Kim Ki Hyung;Lee Je Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Aluminum plate heat exchanger, rotary wheel heat exchanger, and heat pipe heat exchanger have been used (or ventilation heat recovery in the air-conditioning system. The purpose of this research is to develop high efficiency plastic plate heat exchanger which can substitute aluminum plate heat exchanger. Because thermal conductivity of plastic is quite small compared to that of aluminum, various heat transfer enhancement techniques are applied in the design of plastic plates. Five types of heat exchanger model are designed and manufactured, which are plate type, plate-fin type, turbulent promoter type, corrugate type, and dimple type. Thermal performance and pressure loss of each heat exchangers are measured in various operating conditions, and compared each other. Test results show that heat transfer performance of corrugate type, turbulent promoter type, and dimple type are increases about $43\%$, $14\%$, and $33\%$ at the equivalent fan power compared to those of plate type, respectively. On the other hand, the heat transfer performance of plate-fin type decreases $9\%$ because fins can not play their own role.

Measurement of angular velocity using the self-mixing effect of semiconductor laser (되먹임 효과를 이용한 회전체의 속도측정)

  • 이병욱
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.250-254
    • /
    • 2000
  • We have constructed laser Doppler velocimetry system using self-mixing effect with a semiconductor laser. This technology is based on the frequency mixing phenomena which occurs when light scattered back from the moving object into the laser cavity interferes with light inside the laser. We have compared the value of Doppler shifted frequency with the velocity variation of the wheel. Frequency dependence on the angle between the moving direction of rotating aluminum wheel and the incident beam also have been proved. As an illustration of the performance of the velocimeter, velocity measurements of a rotating disk are described. Doppler signal shows a good linear relationship with velocity of rotating disk.

  • PDF

Development of ELID Monitoring System and its Application to ELID Grinding of Structural Ceramics (ELID 연삭 모니터링 시스템의 개발과 구조 세라믹스 적용 사례)

  • Kwak, Tae-Soo;Kim, Gyung-Nyun;Kwak, Ihn-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1245-1251
    • /
    • 2013
  • This study has focused on development of ELID monitoring system and its application to ELID grinding of structural ceramics. ELID monitoring system was consisted of grinding equipment, ELID power supply, grinding wheel, electrode and monitoring program. It can give a real time data to check spindle grinding resistance, wheel revolution, dressing current and voltage in ELID grinding process. The performance of developed system was evaluated by applying to grinding of structural ceramics, silicon carbide and alumina. As the results of experiments, monitored data for spindle resistance and ELID dressing current was useful to check steady-state ELID grinding process. From the comparison of spindle resistance between ELID grinding and conventional grinding process according to change of depth of cut, it could be confirmed that the spindle resistance in ELID grinding was lower than conventional grinding process.

A Study on the Stiffness of a 13degree-type Impact Tester for Aluminum Wheels (자동차용 휠(wheel)의 충격해석 신뢰도 향상을 위한 13도법 충격시험기의 강성 연구)

  • Ko, Kil-Ju;Kim, Man-Seob;Song, Hyun-Woo;Yang, Chang-Geun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.12-19
    • /
    • 2006
  • It is positively necessary to study on the stiffness of a 13degree-type impact tester in order to improve the fracture prediction of impact testing in wheels using FE(finite-element) analysis. The 13degree-type impact tester consists of an impact striker, a wheel fixer, a steel plate, and four cylindrical rubbers. Important parts of the tester are the steel plate and four cylindrical rubbers which play a role of absorbing impact energy during impact testing. Because of these buffers, the RF(reaction force) variation of the lower part in the 13degree-type impact tester showed the tendency like a damped harmony oscillation during impact testing. In order to investigate the stiffness of a 13degree-type impact tester, this work measured each stiffness of a steel plate and cylindrical rubbers. The stiffness of a cylindrical rubber was measured using a compressive tester. On the other hand, the stiffness of a steel plate was predicted by simulating experimental method using FE analysis.

A study on the thickness change according to the necking ratio of aluminum tube(A3003, A6061) (알루미늄 튜브(A3003, A6061)의 축관률에 따른 두께 변화에 관한 연구)

  • Oh, Jong-Seong;Min, Kyung-Ho;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2021
  • The tube necking process increases the thickness of the material, and some of the tube necking products require cutting on the inside of the formed product as a post-process. In order to prevent over-cutting or un-cutting due to increased thickness during cutting, it is necessary to know in advance the increase in thickness after forming. Therefore, in this study, the thickness change according to the tube necking was observed. Aluminum 3003-F and 6061-O were used for the materials used in the experiment, and necking was carried out up to 50% of the outer diameter of the tube through five processes. The two materials were formed under the same conditions, and the thickness of three points was observed in each process. In addition, the thickness increase of the two materials was compared, and the trend of thickness increase according to the cumulative necking ratio was observed. As a result of the experiment, both materials had the smallest thickness at the end of the formed product. In addition, as a result of comparing the thickness measurement values of the two materials, the maximum difference was 0.1mm, indicating that there was no difference in thickness between the two materials.

Shape Optimal Design for the Leg Parts of Chair (의자 다리 부재에 대한 형상 최적 설계)

  • Kang, Sung-Soo;Jeong, Young-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.735-739
    • /
    • 2011
  • In this study, a chair with 5 or 6 legs was designed using the commercial program CATIA V5 in order to efficiently design considering the load conditions. In addition, the stress analysis and shape optimization were carried out using ANSYS Workbench for the chair consisting of stainless steel, aluminum alloys, magnesium alloys and structural steel. As a result, a chair with five legs showed the maximum equivalent stress at the end of the edge of the wheel parts and on the other hand, a chair with six legs showed the maximum equivalent stress at the corner of the connecting parts of the pillar and leg. In addition, the material and the weight was reduced by shape optimization for the chair model with 5 legs and maximum equivalent stress for stainless steel was found that greatly relaxed, compared with that of before shape optimization model.

An Evaluation of Structural Test and Analysis for Composites Vehicle Structures of Automatic Guideway Transit (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 평가)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dae-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1103-1108
    • /
    • 2009
  • This paper describes the results of structural test and finite element analysis for rubber wheel-type Automatic Guideway Transit(AGT) made of aluminum honeycomb sandwich composites with WR580/NF4000 glass-fabric epoxy laminate face sheets. The static tests of vehicle structure were conducted according to JIS E7l05. These static tests have been done under vertical load, compressive load and 3-point support load. The structural integrity of AGT vehicle structure was evaluated by displacement, stress obtained from LVDT and strain gauges, and natural frequency. And finite element analysis using Ansys v11.0 was done to compare with the results of static test. The result showed that the results of structural integrity for static test were in an good agreement with these of finite element analysis.

  • PDF

Evaluation of Fatigue Life and Structural Analysis for Dish-Type and Spoke-Type Automobile Wheels (승용차용 디쉬 타입과 스포크 타입 휠에 대한 구조 해석과 피로 수명 예측)

  • Kang, Sung-Soo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1315-1321
    • /
    • 2011
  • Prior to the experimental and production stages of goods, the strengths should be evaluated in the design stage. The introduction of commercial codes at the design stage gives benefits such as cost and time economies in the production and strength evaluation. In this study, structural analysis and fatigue analysis are carried out using ANSYS modeling of the 3D geometry of the wheel. In a comparison of dish-type and spoke-type wheels, it is shown that the deformation and maximum equivalent stress for the dish-type wheels are lower than those for spoke-type wheels. Nevertheless, spoke-type wheels are often used because they are light and have exhibit excellent cooling performance. Furthermore, according to the results of life analysis, aluminum wheels show improved resistance to fatigue compared to steel wheels.