• Title/Summary/Keyword: Aluminum powders

Search Result 189, Processing Time 0.028 seconds

Preparation of Titanium Carbide Fiber-Reinforced Alumina Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis

  • Yun, Jondo;Bang, Hwancheol
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.171-175
    • /
    • 1998
  • $Al_2O_3$-TiC composites were prepared from aluminum, titanium oxide, and carbon fibers by self-propagating high-temperature synthesis(SHS). After the SHS reaction, the TiC phase in the sample was found either fibrous or non-fibrous shape. The fraction of the fibrous TiC phase varied with the amount of $Al_2O_3$ diluent addition. The optimum amount of diluent to make fibrous carbide was determined to be 30%. The fibers were hollow inside and made of multiple grains with a composition of titanium carbide. The hollow fiber formation mechanism was suggested and discussed. The synthesized powders were consolidated to dense composites by hot pressing at $1750^{\circ}C$ under 30 MPa.

  • PDF

Thermophysical Properties of Epoxy Molding Compound for Microelectronic Packaging (반도체 패키지 EMC의 열물성 연구)

  • 이상현;도중광;송현훈
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.33-37
    • /
    • 2004
  • As the high speed and high integration of semiconductor devices and the generation of heat increases resulted in the effective heat dissipation influences on the performance and lifetime of semiconductor devices. The heat resistance or heat spread function of EMC(epoxy molding compound) which protects these devices became one of very important factors in the evaluation of semiconductor chips. Recently, silica, alumina, AlN(aluminum nitride) powders are widely used as the fillers of EMC. The filler loading in encapsulants was high up to about 80 vol%. A high loading of filler was improved low water absorption, low stress, high strength, better flowability and high thermal conductivity. In this study, the thermal properties were investigated through thermal, mechanical and microstructure. Thermophysical properties were investigated by laser flash and differential scanning calorimeter(DSC). For detailed inspection of materials, the samples were examined by SEM.

  • PDF

Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet (YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Fabrication of Aluminum Powder Disk by a Template Method and Its Etching Condition for an Electrode of Hybrid Supercapacitor (Template 방법을 이용한 Hybrid Supercapacitor 전극용 알루미늄 분말 디스크 제조와 에칭 조건 연구)

  • Jin, Chang-Soo;Lee, Yong-Sung;Shin, Kyung-Hee;Kim, Jong-Huy;Yoon, Soon-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.145-152
    • /
    • 2003
  • Capacitance of a hybrid capacitor that has characteristics of both electrolyte capacitor and supercapacitor is determined by anode surface covered with oxide layer. In this study, optimal condition processes for anode to fabricate a high voltage hybrid capacitor was investigated. We mixed aluminum powder having mean particle size of $40{\mu}m$ with NaCl powders at weight ratio of 4 : 1 and prepared a disk type electrode after annealing at various temperature. After dissolving NaCl in $50^{\circ}C$ distilled water, heat treatment, eletropolishing, chemical treatment, and the first and the second etching of Al disk were conducted. In each process, capacitances and resistances of the disk measured by ac-impedance analyzer were compared to find its optimum treatment condition. Also, the surface morphology of treated disks were observed and compared by SEM. After the second etching, the Al disk was anodized at 365V to make an anode of hybrid supercapacitor that can be operated at 300V, Capacitance and resistance of the anodized Al disk electrode was compared with those of commercialized conventional aluminum electrolytic capacitor at different frequencies.

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process (DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과)

  • Kim, Woosung;Hong, Myungpyo;Kim, Yanggon;Suh, Chang Hee;Lee, Jongwon;Lee, Sunghee;Sung, Ji Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.

Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide (La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발)

  • Jung, Mie-Won;Lim, Saet-Byeol;Moon, Bo-Ram;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

Preparation of corundum ($\alpha$-Al_{2}O_{3}$) by hydrothermal growing process : I. A study on the effects of reaction temperature and seed crystal (수열성장법에 의한 코런덤($\alpha$-Al_{2}O_{3}$) 제조 : I. 반응온도와 종자결정의 영향에 관한 연구)

  • 반종성;이기정;서경원;목영일;이철경
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.129-140
    • /
    • 1996
  • In this study, we have prepared corundum ($\alpha$-Al_{2}O_{3}$) single crystals from aluminum hydroxides by hydrothermal growing process and have investigated the reaction conditions. The hydrothermal conditions were mainly affected by reaction temperature, seed crystal and reaction time. Especially, seed crystal has strong effects on the particle size and crystallity of products. By adding seed crystal in Japanese gibbsite solution as the nutrient, hydrothermal reaction was performed for 2 hours at the reaction temperature of $460^{\circ}C$, to produce corundum powders which had weight mean particle diameter of $11\;\mu\textrm{m}$ with hexagonal crystal, Without adding seed crystal in Russian gibbstite solution, corundum powders that have weight mean particle diameter of $6\;\mu\textrm{m}$ with hexagonal crystals were also formed after 2 hours operation at the reaction temperature of $420^{\circ}C$.

  • PDF

STDUY ON THE SURFACE MORPHOLOGE AND SHEAR BOND STRENGTH OF IN-CERAM CORE TO RESIN CEMENT AFTER VARING MODES OF SURFACE CONDITIONING (In-Ceram 코아의 표면처리 방법에 따른 레진 시멘트와의 결함강도 및 표면상태에 관한 연구)

  • Kim, Yeung-Sug;Woo, Yi-Hyung;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.693-704
    • /
    • 1995
  • This study was performed to evaluate effective surface conditioning method of In-Ceram core to improve bonding with resin cement. The surface of each sample was avraded with glass bead for 20 seconds and then subjected to one of the following conditions : no modification, sandblasting with $50{\mu}m$ slumimum oxide powders for 20 seconds, etching with 20% hydrofluoric acid for 5, 10, and 15 minutes(half of the etched samples were coated with silane), and sandblasting with $250{\mu}m$ aluminum oxide powders and silica coating whith Silicoater MD system(Kulzer, Germany). The surface morphology changes were examined with scanning electronic microscope(SEM. and the shear bond strength of In-Ceram core samples to resin cement(Panavis 21, Kurayay, Japan) were measured. It was concluded that : 1. By SEM observation, 20% HF acid etching did not create clear microretentive structure and surface roughness diminished with increace in etching time. Sandblasting was more effective than 20% hydrofluoric acid etching in producing microretentive structure. 2. The bond strengths of all In-Ceram core samples surface conditioned were increased that that of control group. 3. Silica coating showed higher bond strength than etching with 20% hydrofluoric acid. 4. The use of silane coating was more effective in improving bond strength than lengthening etching time.

  • PDF