• Title/Summary/Keyword: Aluminum plate

Search Result 535, Processing Time 0.025 seconds

DEVELOPMENT OF AN ASTRONOMICAL INFRARED PtSi CAMERA (천문관측용 PtSi 전하결합소자 적외선 카메라의 개발)

  • Hong, Seung-Su;;Gu, Bon-Cheol;Kim, Kwang-Tae;Kim, Chil-Yeong;Oh, Gap-Su;Lee, Myeong-Gyun;Lee, Hyeong-Mok;Kang, Yong-Woo;Park, Won-Gi
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.1-26
    • /
    • 1996
  • We have built a near-infrared imaging camera with a PtSi array detector manufactured by the Mitsubishi Company. The PtSi detector is sensitive in the wavelength range 1 to $5{\mu}m$. Quantum efficiency of PtSi is much lower than that of InSb and HgCdTe types. However, the PtSi array has advantages over the latter ones: (i)The read-out noise is very low; (ii)the characteristics of the array elements arc uniform and stable; (iii)it is not difficult to make a large PtSi array; and (iv) consequently the price is affordably low. The array used consists of $512{\times}512$ pixels and its size is $10.2\;mm{\times}13.3\;mm$. The filter wheel of the camera is equipped with J, H, K filters, and an aluminum plate for measuring the dark noise. The dewar is cooled with liquid nitrogen. We have adopted a method of installing the clock pattern and the observing softwares in the RAM, which Gill he easily used for other systems. We have developed a software with a pull-down menu for operating the camera and data acquisition. The camera has been tested by observing $\delta$ Orionis.

  • PDF

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

Free Vibration Characteristics of Rectangular Plates under Uniform Thermal Loading Part II. Experimental Modal Test (균일 열부가 하중을 받는 사각판의 자유 진동특성 연구 Part II. 고유진동 실험)

  • Jeon, Byoung-Hee;Kang, Hui-Won;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • This paper was conducted on experimental analysis in the free vibration analysis of rectangular plates under uniform thermal loading. Materials of three rectangular plates were aluminum, steel and stainless-steel respectively. The dimension of rectangular plates was 0.1 $\times$ 0.1 $\times$ 0.002 m. Infrared quartz lamps were used for thermal loading. The PCS(Power Control System) electric control system was applied for control and scanning vibrometer (Poly Tech) was used for acquisition of frequency response function. Applied temperature was increased from room temperature to $300^{\circ}C$ by $50^{\circ}C$. Boundary condition was free-free condition using bungee cord. Front face of rectangular plate was heated uniformly.

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Increase heat dissipation efficiency of Al plate according to surface roughness treatment by sandpaper or sandblast (사포, 샌드블라스트로 표면 거칠기 처리에 따른 알루미늄 판의 방열 효율 증대)

  • Lee, Dong-Hee;Lee, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.170-178
    • /
    • 2019
  • Recently, as the interest in energy savings has increased, there has been increasing use of LED lighting, which is an eco-friendly device that replaces high energy consuming fluorescent lamps and incandescent lamps. In the case of a high output LED, however, the life time is shortened due to deterioration caused by heat generation. As a solution to this problem, this paper evaluated the LED life extension effect by increasing the convective heat transfer coefficient of the heat sink surface for LED packaging. A roughing process was carried out using sandpaper and sand blasting. The changes in surface roughness and surface area after each surface treatment process were evaluated quantitatively and the convective heat transfer coefficient was measured. When sandblasting and sandpaper were used to roughen the aluminum surface, a higher convection heat transfer coefficient was obtained compared to the untreated case, and a high heat dissipation efficiency of 82.76% was obtained in the sandblast treatment. Therefore, it is expected that the application of heat dissipation to the heat sink will extend the lifetime of the LED significantly and economically by increasing the heat efficiency.

Study on Structural Reliability Assessment of a Partition Panel Made of a CFRP(Carbon Fiber Reinforced Plastic) (탄소복합재 부품 파티션패널의 구조 강성/강도 신뢰성 평가에 관한 연구)

  • Lee, Jaejin;Mun, Jihun;Yoon, Wonho;Kang, Dakyung;Ahn, Minsu;Roh, Hyungjin;Kang, Jiheon;Lee, Jaewook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.68-74
    • /
    • 2019
  • In the case of a partition panel for a vehicle, it is used as a vehicle chassis component that serves to distinguish the indoor and outdoor spaces of a vehicle and is mounted on a backrest portion of the vehicle's back seat to ensure the convenience of passengers by connecting the floor and the side of the vehicle. Because it is a relatively large-sized plate material among automobile chassis parts except the moving parts and non-ferrous materials can be applied, it is considered as a part having a large light-weight effect. However, the partition panel is one of the vehicle parts that must satisfy the light-weight effect as well as various structural reliability, such as torsional rigidity, vibration, and impact characteristics, for securing the running stability of the vehicle when driving at the same time. So, In this study, the possibility of replacing the aluminum partition panel as CFRP(Carbon Fiber Reinforced Plastic) partition panel is evaluated through comparing the two partition panels by using the structural reliability(stiffness/strength analysis), vibration analysis, impact analysis.

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Turbine Case Containment Capability Evaluation Using Finite Element Analysis (유한요소해석을 이용한 터빈 케이스의 컨테인먼트 성능 평가)

  • Jun-woo Baek;Sang-woo Kim;Soo-yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, we used finite element analysis to conduct a containment capability evaluation of a turbine case. When analyzing the impact behavior of structures subjected to impact loads, it is important to consider the strain rate, as it affects the increase in flow stress. Therefore, we applied three material models (Cowper-Symonds, Johnson-Cook, and Modified Johnson-Cook) for the impact analysis. To validate these material models, we performed an impact test on an aluminum 6061 plate. By comparing and analyzing the experimental and analytical results, we determined that the Modified Johnson-Cook material model exhibited the least error. As a result, we applied this material model to evaluate the containment capability of the turbine case. This evaluation involved determining the occurrence of penetration, as well as the stress and strain induced at the collision area due to the initial velocity of the blade.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane $H^+-flux$ in Mung Bean (알루미늄에 의한 녹두 뿌리의 생장 억제와 원형질막 $H^+-flux$의 손상)

  • Ahn, Sung-Ju;Kim, Yu-Sun;Park, Won;Ku, Yang-Gyu;Min, Kyung-Soo;Whang, Tei-Ik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • It has been well established that aluminum (Al) inhibits root tip growth rapidly in acid soil. We report the correlation between Al induced growth inhibition and impaired $H^+-flux$ in mung bean (Vigna radiate L. cv. Kumsung). The root growth inhibition was dependent on Al concentration (0, 10, 25, 50, $100{\mu}M$) and exposure time (12 and 24 h). Using Hematoxylin staining, it was observed that the root damage was occurred preferentially in regions with high Al accumulation. Using the pH indicator, it was shown that the surface pH of root tip was strongly alkalized in the control whereas changed only slightly in the $50{\mu}M$ Al-treated root. The $H^+-ATPase$ activity of plasma membrane vesicles was inhibited by 56% in the Al-treated roots compared to control root. Decrease in the amount of the plasma membrane $H^+-ATPase$ (100 kDa) translation in the plant roots under Al stress was demonstrated by Western blot analysis. These results indicate that the dynamics of $H^+-flux$ across the root tip play an important role in root growth under Al stress.