• Title/Summary/Keyword: Aluminum plate

Search Result 535, Processing Time 0.026 seconds

Experimental and numerical disbond localization analyses of a notched plate repaired with a CFRP patch

  • Abderahmane, Sahli;Mokhtar, Bouziane M.;Smail, Benbarek;Wayne, Steven F.;Zhang, Liang;Belabbes, Bachir Bouiadjra;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.361-370
    • /
    • 2017
  • Through the use of finite element analysis and acoustic emission techniques we have evaluated the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair patch on a notched aluminum substrate. The repair of cracks is a very common and widely used practice in the aeronautics field to extend the life of cracked sheet metal panels. The process consists of adhesively bonding a patch that encompasses the notched site to provide additional strength, thereby increasing life and avoiding costly replacements. The mechanical strength of the bonded joint relies mainly on the bonding of the adhesive to the plate and patch stiffness. Stress concentrations at crack tips promote disbonding of the composite patch from the substrate, consequently reducing the bonded area, which makes this a critical aspect of repair effectiveness. In this paper we examine patch disbonding by calculating the influence of notch tip stress on disbond area and verify computational results with acoustic emission (AE) measurements obtained from specimens subjected to uniaxial tension. The FE results showed that disbonding first occurs between the patch and the substrate close to free edge of the patch followed by failure around the tip of the notch, both highest stress regions. Experimental results revealed that cement adhesion at the aluminum interface was the limiting factor in patch performance. The patch did not appear to strengthen the aluminum substrate when measured by stress-strain due to early stage disbonding. Analysis of the AE signals provided insight to the disbond locations and progression at the metal-adhesive interface. Crack growth from the notch in the aluminum was not observed until the stress reached a critical level, an instant before final fracture, which was unaffected by the patch due to early stage disbonding. The FE model was further utilized to study the effects of patch fiber orientation and increased adhesive strength. The model revealed that the effectiveness of patch repairs is strongly dependent upon the combined interactions of adhesive bond strength and fiber orientation.

Design and control of the electrostatic suspension system for flexible objects

  • Toshiro Higuchi;Jeon, Jong-Up;Kim, Sun-Min;Woo, Shao-Ju;Lee, Sun-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.383-386
    • /
    • 1997
  • Electrostatic suspension is a method to levitate an object by using electrostatic forces. Its main advantage is to levitate objects without any mechanical contact which fulfills the requirement of an object handling in ultra clean environment. In this paper, the electrostatic suspension system for film-like thin plate such as aluminum sheet, is designed and controlled. In contrast with the conventional electrostatic suspension system which requires the costly and bulky high-voltage amplifiers, it is suggested to use the switching voltage control method in consideration of real industrial application for the handling of such flexible bodies. Some experimental results show that the developed electrostatic suspension system shows good performances to levitate flexible film-like thin plate.

  • PDF

Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors (광섬유 센서를 이용한 구조물의 열변형 및 온도 측정)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

Tile Size Dependency of Ballistic Performance in Alumina (알루미나의 시편크기가 방탄거동에 미치는 영향)

  • ;S.J. Bless
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.366-370
    • /
    • 1995
  • The ballistic efficiency of alumina tiles with various sizes, shapes, and target configurations was measured by the thick backing plate technique. The ballistic efficiency of square tiles roughly 8 mm thick struck by 12.7mm diameter bullets rapidly increased with tile size up to about 100mm, then tended to saturate. Circular shape tiles had lower ballistic efficiencies than those of square shape tiles for the same width and thickness. Small tiles (50mm) that were recessed in aluminum wells had a significantly higher ballistic efficiency than tiles placed on a flat surface. However, the difference in the ballistic efficiency between the two target configurtions became small at larger tile sizes. All the results could be explained by the effect of reflected waves at edges and the propagation of resulting cracks on the penetration process.

  • PDF

Crack Growth Retardation Effect and Metallographic Observation of Aluminum Alloy Plate with Pre-Indentation (예비압입에 의한 알루미늄 합금 판재의 균열성장 지연효과 및 금속조직 변화)

  • 황정선;조환기;윤용인
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • Fatigue test is conducted to see the effect of pre-indentation on the fatigue crack retardation of Al5052-H18 plate. Metallographic observation is introduced to deduce the relationship between fatigue crack retardation and fracture appearance with indentation. The grain size of the specimen becomes smaller with the increase of indentation force and the plastic zone is formed with the decrease of grain size. The fatigue striations are appeared densely as the Indentation force becomes higher. Metallographic observation and fatigue test results show that the indentation force has the limited value in improving fatigue crack retardation. Important point to retard the fatigue crack growth is that the crack growth path should pass through the indented area.

Basic Experiment for Lamb Wave Focusing by Phased Magnetostrictive Transducers in a Plate (자기변형 트랜스듀서의 위상차를 이용한 평판에서의 Lamb파 집속 기초 실험)

  • Lee, Joo-Kyung;Kim, Hoe-Woong;Lee, Ho-Cheol;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • The ultrasonic guided wave phased array using magnetostrictive patch transducers is proposed. The magnetostrictive transducer has received much attention because it is cost-effective and capable to generate ultrasonic waves with a simple configuration. However, it has not been used for ultrasonic guided wave phased array applications until now. In this paper, we propose a magnetostrictive transducer based phased array system consisting of a multi-channel function generator, power amplifiers and Lamb wave magnetostrictive transducers. To check the performance of the ultrasonic guided wave phased array, several Lamb wave focusing experiments were carried out in an aluminum plate. The results demonstrated the capability of the developed array to focus the Lamb waves at specific target points.

Characteristics of Friction Noise with Changes of the Natural Frequencies in the Reciprocating Motion (왕복운동에서의 고유주파수 변화에 따른 마찰소음 특성 연구)

  • Choi, Hoil;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2014
  • Experimental study is conducted for investigating the characteristics of friction-induced noise with respect to the variation of system geometry. In this study, a vertically fixed rod is in contact with the reciprocating plate which is controlled by the step motor. Friction noise is generated during the reciprocating motion due to the frictional contact between the plastic pin and the aluminum plate. The frequencies of the friction noise are changed when the height of the rod varies. However, it is found that the vibration modes involved in the friction noise are not changed. It implies that the unstable modes remain unstable regardless of the change of the system geometry, and thus, there are the certain mode shapes which are likely to produce friction noise.

Vibration Control of Plates Using Resonant Shunted Piezoelectric Material (공진분기회로를 이용한 평판의 진동제어)

  • Kim, Young-Ho;Park, Chul-Hue;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1778-1784
    • /
    • 2003
  • Vibration control of plates with a passive electrical damper is presented in this paper. This electrical absorber, piezoelectric patches connected with a resistor and an inductor in series, is analogous to the damped mechanical vibration absorber. For estimating the effectiveness of piezoelectric absorber, the governing equations of motion are derived using a classical laminate plate theory and Hamilton principle. The developed theoretical analysis is validated experimentally for a simply-supported aluminum plate in order to demonstrate the performance of passive electrical damper. The result shows that the vibration amplitude is reduced about 14dB for the targeted first vibration mode.

A Study on MR Insert for Shock Wave Attenuation (MR Insert 의 충격저감 성능 연구)

  • 강병우;김재환;최승복;김경수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.121-126
    • /
    • 2001
  • This paper presents the experimental study for the reduction of transmitted shock waves in smart structures incorporating MR insert. MR fluid is filled within the two aluminum layers and two piezoceramic disks are embedded on the host plate as a transmitter and a receiver of the shock wave. Pulse wave generated by the transmitter is transmitted to the receiver through the MR insert and the plate. By applying magnetic field to the MR insert, the amplitude of the transmitted shock wave is reduced remarkably. The attenuation performance is tested by changing the applied magnetic field on MR inserts in two ways: by changing angle of permanent rubber magnet from 90 to 5 with 5 decrements, by using electromagnet in which magnetic field is controllable. The propagating wave speed of MR insert is also investigated.

  • PDF

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.