• Title/Summary/Keyword: Aluminum frame

Search Result 122, Processing Time 0.024 seconds

Dynamic Behavior Analysis of a Satellite Having Sandwich Panel by Utilizing Asymptotic Homogenization (Asymptotic 균질화법을 활용한 샌드위치패널로 제작된 위성 구조체의 동적 거동 분석)

  • Cho, Hee Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1203-1210
    • /
    • 2013
  • Korea's first Naro-Science small class satellite was launched by Naro launcher in 2013. The structure of the satellite is mostly composed of aluminum honeycomb and frame. The honeycomb structure is homogenized with asymptotic homogenization method and its mechanical properties were used for the numerical analysis. There have been some difficulties to modeling the honeycomb sandwich panels for FEA. In the present study, the mechanical characteristics of the sandwich panel composite were numerically computed and used for the simulation. This methodology makes it easy to overcome the weakness of modeling of complicated sandwich panels. Both an experiment of vibration test and numerical analyses were conducted simultaneously. The analysis results from the current homogenization were compared with that of experiment. It shows a good agreement on the dynamic responses and certified the reliability of the present methodology when manipulate sandwich panel structure.

Durability Evaluation of Automobile Control Arm (자동차용 컨트롤암의 내구성능 평가)

  • Kim, Jong-Kyu;Jang, Byung-Hyun;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.168-172
    • /
    • 2012
  • Control arm is the structural component that pivots on two places. One end of the control arm is attached to the body frame and the other end is attached to the steering knuckle. The former research proposed the structural design by applying optimization technique with aluminum alloy. This study suggests a durability test method on the developed upper control arm to validate the analysis results. The durability analysis results of the developed control arm by using MSC Fatigue is confirmed to be close to infinite life. The weak model of developed control arm which occurs to finite life is made to perform the durability test and the zig design is developed in this process.

Temperature characteristics of iron and molds in summer apartment conditions (여름철 Apt현장 조건에서의 철근 및 거푸집의 온도특성)

  • Lee, Jea-Hyeon;Moon, Byeong-Yong;Lee, Sang-Un;Lee, Joung-Gyo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.17-18
    • /
    • 2016
  • On apartment construction sites in hot weather environments, the high temperature of 30℃ and above and radiation from the sun cause iron and mold temperatures to rise, which lowers worker efficiency and has a negative effect on the deposited concrete. Therefore this study measured the temperature of D10 ~ D16 iron and aluminum items actually used on box frame apartment construction sites currently under construction, in order to give reference information to solve hot weather concrete problems. The temperature measurement results showed that for iron, temperatures rose to around 45℃, and for mold around 58.8℃, calling for safety measures for workers in case of possible burning and other problems.

  • PDF

An Experimental Study on Fire Spreading External Wall of Buildings Using Dry Construction Method (건식공법을 이용한 건축물의 외벽 화재 확산의 실험적 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.75-85
    • /
    • 2018
  • The Grenpell tower fire in England in June of 2016 is a representative example of damage caused by a vertical fire spreading through external insulation. Organic insulation materials, which are widely used in external insulation, have the disadvantage that they have good insulation performance but are vulnerable to fire. Aluminum composite panels are used as exterior wall finishing materials, and plastics used in aluminum are regarded as the cause of vertical fire spread. Due to the steel frame used to secure the aluminum composite panel to the outer wall, a cavity is formed between the outer wall and outer wall finish. When a fire occurs on the outer wall, the flammable outer wall as well as the flame generated from the heat-insulating material spreads vertically through the cavity, resulting in damage to people and property. In Korea, material unit performance tests are carried out by the Ministry of Land, Infrastructure and Transport notice 2015 - 744. However, in the UK, the BS 8414 test is used to measure the vertical fire spreading time on the outer wall in real scale fire tests. In this study, the risk of external wall fire was evaluated in an actual fire by conducting a real scale wall fire test (BS 8414), which was carried out in Europe, using aluminum composite panels of semi-noncombustible materials suitable for current domestic standards. The purpose of this study was to confirm the limitations of material unit evaluation of finishing materials and to confirm the necessity of introducing a system to prevent the spread of outer wall fire through an actual scale fire test.

Soil Deformation Tracking in Model Chamber by Targetless Close-Range Photogrammetry (무타겟 사진측량 기반 모형 토조 내 지반 변위 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.555-562
    • /
    • 2019
  • This paper presents soil deformation measurement in model chamber based on photogrammetry. We created an aluminum framed acrylic model chamber with soil inside and applied photogrammetry to measure soil deformation caused by loading tests. The soil consists of 40% black and 60% regular sand to create image contrast in soil images. In preprocessing, the self camera calibration was carried out for IOPs (Interior Orientation Parameters), followed by the space resection to estimate EOPs (Exterior Orientation Parameters) using control points located along the aluminum frame. Image matching was applied to measure the soil displacement. We tested different matching window sizes and the effect of image smoothing. Experimental results showed that 65x65 pixels of window size produced better soil deformation map and the image smoothing was useful to suppress the matching outliers. In conclusion, photogrammetry was able to efficiently generated soil deformation map.

A Study on Fabrication of Monolithic Lightweight Composite Electronics Housing for Space Application (우주용 일체형 경량 복합재료 전자장비 하우징 제작에 관한 연구)

  • Jang, Tae Seong;Seo, Jung Ki;Rhee, Juhun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.975-986
    • /
    • 2013
  • This paper dealt with the fabrication and performance evaluation of the electronics housing made of lightweight composite materials, aiming at the enhancement of satellite mass savings by replacing conventional aluminum alloy widely used for satellite avionics with lightweight composite material. For this purpose, a fabrication process was designed to overcome low machinability of CFRP and to minimize the post-treatment. The composite housing with grid-stiffened and monolithic frame was made using co-curing method. Its performance was also evaluated regarding endurance, stiffness, thermal conductivity, electrical grounding, EMI protection and radiation shielding. The composite housing can provide the considerable mass savings over the aluminum housing with same dimension.

Process and Die Design of Square Cup Drawing for Wall Thickening (사각형 판재성형 시 벽두께 증육을 위한 금형 및 공정 설계)

  • Kim, Jinho;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5789-5794
    • /
    • 2015
  • Recently, thin and light-weight production technologies are needed in IT industry in accordance with increase of the smart phones and mobile PC products. In order to make light and high rigidity products, engineering plastic and aluminum materials are frequently used in products appearance and frame hat support structure. Especially aluminum extrusion and CNC Brick processes are widely used for high strength and high rigidity technology. But extrusion method has constraints to apply exterior design and CNC Brick process has relatively high production cost and low speed of manufacturing. In this research, a new process method is introduced in order to reduce material cost and to improve manufacturing speed dramatically. Plate forging process means basically that thickening of local wall area thickness after deform exterior shape by deep drawing and bending process. Therefore, it is possible to minimize the waste of material and the manufacturing time. In this study the process of plate forging is designed using finite element program AFDEX-2D and the thickness and the width of initial deformed blank. And it is verified as a sample which is a part of laptop developed through the proposed plate forging method.

Analyses on Airbag Sensor Signals by Different Packaging (자동차용 에어백 센서의 패키징 방법에 따른 신호 전달 해석)

  • Kim, Yeong K.;Kang, Hyun Jin;Kim, Joon Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.105-109
    • /
    • 2015
  • In this study, a new airbag sensor packaging technique of directly attachment by adhesive to the automobile frame is introduced. To assess the feasibility for the packaging, a test instrument was manufactured to examine the impact sensibility by drop tests. The conventional sensor module attached mechanically by bolts with plastic housing and the new sensor packaging were installed to aluminum channel, and the results were compared with each other. Numerical analysis was also performed to investigate the signal characteristics created by the sensors. The preliminary results showed that the pattern of the MEMS sensor signal was strongly dependent on the structural behavior of the frame where the sensors were installed, which indicated the complexity of the packaging design for proper airbag deployments.

Adsorption Characteristics of Nitrogen Monoxide on Y-type and ZSM-5 Zeolites Exchanged with Alkali/Alkaline-earth Metal Cation (알칼리/알칼리토금속 양이온을 치환한 Y형 및 ZSM-5 제올라이트의 NO 흡착 특성)

  • Kim, Cheol Hyun;Lee, Chang Seop
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.857-864
    • /
    • 2005
  • Dealuminated and alkali/alkaline-earth metal exchanged Y-type and ZSM-5 zeolites were prepared as catalytic materials. Comparing with the composition of starting material, the magnitude of Si/Al ratio was increased after dealumination and cation exchange process. The ratio of Si/Al on surface was appeared to be larger than that in bulk. The destruction of basic frame in catalysts observed was understood to be due to a detachment of aluminum, which results in reducing framework while increasing non-framework. This phenomenon becomes more serious with increasing time of steam treatment and even more significant for the cation exchanged catalysts. The desorption peaks of the NO-TPD profiles taken after dealumination and cation exchanged Y-type and ZSM-5 zeolites shifted to the low temperature region. It was also found that the longer the steam treatment time, the degree of shift toward low temperature region was increased. The catalytic activities are dependent on the nature of cation exchanged, the ratio of Si/Al and the ratio of framework/non-framework by a change in basic frame.

A study on the comparison of a steel building with braced frames and with RC walls

  • Buyuktaskin, Almila H. Arda
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2017
  • In this study, two geometrically identical multi-storey steel buildings with different lateral load resisting systems are structurally analyzed under same earthquake conditions and they are compared with respect to their construction costs of their structural systems. One of the systems is a steel structure with eccentrically steel braced frames. The other one is a RC wall-steel frame system, that is a steel framed structure in combination with a reinforced concrete core and shear walls of minimum thickness that the national code allows. As earthquake resisting systems, steel braced frames and reinforced concrete shear walls, for both cases are located on identical places in either building. Floors of both buildings will be of reinforced concrete slabs of same thickness resting on composite beams. The façades are assumed to be covered identically with light-weight aluminum cladding with insulation. Purpose of use for both buildings is an office building of eight stories. When two systems are structurally analyzed by FEM (finite element method) and dimensionally compared, the dual one comes up with almost 34% less cost of construction with respect to their structural systems. This in turn means that, by using a dual system in earthquake zones such as Turkey, for multi-storey steel buildings with RC floors, more economical solutions can be achieved. In addition, slender steel columns and beams will add to that and consequently more space in rooms is achieved.